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Abstract

Transportation mode selection is becoming increasingly popular in the field of

logistics and operations research. Several modeling challenges exist, one being the

consideration of multiple factors into the transportation decision. While the Ana-

lytic Hierarchy Process is quite popular in the literature, other multicriteria decision

analysis methods such as value focused thinking (VFT) are used sparingly, as is the

case across the entirety of the supply chain literature. We provide a VFT tutorial for

supply chain applications and a general transportation mode selection value hierar-

chy. The transportation environment lends itself naturally to network optimization;

we therefore integrate multicriteria decision analysis (MCDA), specifically VFT, with

the shortest and longest path problem. Since a decision maker desires to maximize

value with these techniques, this creates the Multiobjective Average Longest Path

(MALP) problem. The MALP allows multiple quantitative and qualitative factors

to be captured in a network environment without the use of multicriteria methods,

which typically only capture 2-3 factors before becoming intractable. The MALP

(equivalent to the average longest path) and the average shortest path problem for

general graphs are NP-complete, proofs are provided. The MALP for directed acyclic

graphs can be solved quickly using an existing algorithm or a dynamic programming

approach. The existing algorithm is reviewed and a new algorithm using DP is pre-

sented. We also create a faster heuristic allowing solutions in O(m) as opposed to

the O(n3) and O(nm) solution times of the optimal methods. This scaling heuristic

is empirically investigated under a variety of conditions and easily modified to ap-

proximate the longest or shortest average path problem for directed acyclic graphs.

Furthermore, a decision maker may wish to make tradeoffs between increasing value

iv



in the network and decreasing the number of arcs used. We show the DP algorithm

and scaling heuristic automatically generate the efficient frontier for this special case

of the more general bicriteria average shortest path problem, thus providing an effi-

cient algorithm for this multicriteria problem. Since most organizations ship multiple

products, the clear extension to the average shortest path is the average minimum

cost flow. Similar to the average shortest path problem, we implement MCDA into

the minimum cost flow problem; this creates a multiobjective average minimum cost

flow (MAMCF) problem, a problem equivalent to the average minimum cost flow

problem. We show the problem is also NP-complete. However, for directed acyclic

graphs efficient pseudo-polynomial time heuristics are possible. The average shortest

path DP algorithm is implemented in a successive shortest path fashion to create an

efficient average minimum cost flow heuristic. Furthermore, the scaling heuristic is

used successively as an even faster average minimum cost flow heuristic. Both heuris-

tics are then proven to have an infinitely large error bound. However, in random

networks the heuristics generate solutions within a small percentage of the optimal

solution. Finally, a general bicriteria average minimum cost flow (BAMCF) problem

is given. In the case of the MAMCF, decision makers may choose to minimize arcs

in a path along with maximizing multiobjective value. Therefore, a special case of

the BAMCF is introduced allowing tradeoffs between arcs and value. This problem is

clearly NP-hard, however good solutions are attainable using the information gained

from the average minimum cost flow heuristics.
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THE AVERAGE NETWORK FLOW PROBLEM: SHORTEST PATH AND

MINIMUM COST FLOW FORMULATIONS, ALGORITHMS, HEURISTICS,

AND COMPLEXITY

I. Introduction

1.1 Transportation Mode Selection

Interest in transportation mode selection is increasing as the world becomes more

interconnected and supply chains expand globally. Operations research techniques are

becoming more popular in logistics, yet much work is still needed. Modeling tradeoffs

between cost, speed, and reliability functions is especially important. A popular

method of combining qualitative and quantitative factors is through multiobjective

decision analysis (MODA), specifically through the use of utility or value functions.

The concept of combining a multiobjective programming problem with an additive

utility or value function is not new [2, 3, 4, 5], however it remains to be integrated

in the context of network optimization. In this dissertation, we combine MODA and

network optimization problems and create new formulations not yet discussed in the

literature.

Due to the inherent structure present in transportation problems, a minimum

cost flow (MCF) optimization model best captures the dynamics of transportation

systems. Accounting for multiple objectives in the MCF problem allows conflicting

criteria to be represented in transportation planning problems, this problem is called

the multiobjective minimum cost flow (MMCF) problem [47]. We take this a step

further and create a unique problem we call the multiobjective average minimum
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cost flow (MAMCF) problem. Hamacher et al [47] present a review of the MMCF

including theory and algorithms for solving; their all inclusive reference list doesn’t

include any papers formulating this problem. Furthermore, very few authors have

even combined multiobjective programming and the MCF, although transportation

planning frequently requires multiple objective functions such as minimizing cost,

minimizing arrival time, minimizing deterioration of goods, and maximizing safety

[47].

The difference between the (MAMCF) and the multiobjective minimum cost flow

(MMCF) problem is in the average calculation, simple minimum cost algorithms can-

not solve MAMCF due to several inherent reasons discussed in the following chapters.

An average network flow algorithm is available for the shortest path problem, a spe-

cial case of the MCF problem, but not for the minimum cost flow problem in general.

In addition to the average shortest path algorithm, non-additive shortest path algo-

rithms are available yet are not very efficient. There needs to be an exclusive study

of the average shortest path and average minimum cost flow problem.

In addition to the MAMCF, another contribution is the application of value fo-

cused thinking to the transportation mode selection problem. Previous research in-

corporating multiple objectives is limited to the analytic hierarchy process (AHP),

an alternative focused method. Alternative focused thinking is concerned with choos-

ing the best alternative among some group of alternatives. AHP is the original and

current method of choice for transportation mode selection [69], value focused think-

ing (VFT) hasn’t been used to solve this problem in the literature. Value-focused

thinking is different in that it chooses the best alternative and determines the value

this alternative has in satisfying the problem objectives. This is especially important

in transportation mode selection where hundreds of alternatives potentially exist.

Rather than choosing the best alternative from a small group, such as that offered by
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a third party logistics (3PL) provider, value focused thinking (VFT) assigns values to

each alternative. If alternatives are low valued, better alternatives can be requested

from the 3PL.

Transportation mode selection needs more quantitative methodologies; this is the

motivating factor behind the new methodology. While the additive value model from

VFT and AHP are quite popular in the literature, no studies exist of its implemen-

tation into the shortest path problem or the minimum cost flow problem. A simple

substitution into the cost function is not sufficient as we show in the subsequent

chapters.

1.2 The Multiobjective Average Shortest Path Problem

The multiobjective average shortest path problem is equivalent to the average

shortest path problem; both are unique formulations. In this paper, we combine

multiobjective techniques such as the analytic hierarchy process [89] and value focused

thinking [61],[60] with the shortest path problem for directed acyclic graphs. The

shortest path problem is thus transformed into a highest or longest average path

problem in order to maximize value within the network setting, allowing multiple

qualitative and quantitative factors to be captured without the use of multicriteria

optimization. Shortest and longest path algorithms cannot solve the average shortest

or longest path problem. Since the problem encompasses a non-linear cost function,

any shortest path algorithm simply chooses a longest or shortest path and ignores the

non-linearity of the average function. We prove the average longest and shortest path

problems for general graphs is NP-complete; this is shown through a reduction from

the Exact Cover by 3-sets problem which is already proven NP-complete. For directed

acyclic graphs, an average shortest path algorithm already exists and solves in O(n3)

[108]. A faster algorithm solving in O(nm) is possible using a dynamic programming
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approach [81]. The method finds the shortest distance d(j, k) from node s to node j

in exactly k arcs. Similarly, it uses a DP approach called the reaching algorithm to

obtain the maximum number of arcs to each node. An arc is then scaled by the rank

of the incoming node subtracted from the rank of the outgoing node and divided by

the rank of the source node. The reaching algorithm is used a second time to solve

the scaled network to optimality. Small errors are possible when using the heuristic

due to the scaling effect, however theoretically its proven no bound exists on the

worst case error unless the arc costs are bound. In practice, the 95% confidence

interval on the error bound is 13%, much better than its theoretical bound. Finally,

a decision maker may choose to consider the number of arcs in a chosen solution. To

accomplish this, a biobjective average shortest path problem is formulated allowing

tradeoffs between increasing value and decreasing arcs. This extends the well known

biobjective shortest path problem to include an non-linear average objective function.

1.3 The Multiobjective Average Minimum Cost Flow Problem

We extend the multiobjective average shortest path problem to the minimum

cost flow. Combining VFT or AHP with the minimum cost flow problem results

in a multiobjective average minimum cost flow problem, which is equivalent to the

average minimum cost flow problem. In the paper, we formulate these problems

and prove them NP-complete by reduction from the exact cover by 3-sets problem.

Current minimum cost flow algorithms cannot solve the MAMCF or the average

minimum cost flow problem (AMCF) as the problems are non-additive in nature. The

average minimum cost flow problem is a special case of the non-additive minimum

cost flow problem; specialized heuristics can therefore exploit the problems structure

for efficiency. Recall the general additive value model
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vj(x) =
∑

wivi(xij) (1)

for i = 1, 2, ..., n measures and j = 1, 2, ...,m alternatives, where vi(xij) is the single

dimension value function of measure i for alternative j, wi is the weight of measure

i, and vj(x) is the multiobjective value for alternative j.

Given a graph G = (V,E), the general minimum cost flow (MCF) problem is:

min z =
∑

(i,j)∈E

ci,j,xi,j

s.t.
∑

(i,j)∈E

xi,j −
∑

(j,i)∈E

xi,j = s(i) ∀ i ∈ N

li,j ≤ xi,j ≤ ui,j ∀ (i, j) ∈ E

(2)

where xi,j is the flow from vertex i to j, ci,j is the cost of a unit of flow from i to

j, li,j is the lower bound on the flow from i to j, ui,j is the upper bound on the flow

from i to j, and s(i) is the supply or demand at node i. The multiobjective average

minimum cost flow formulation combines these two methods.

Similar to the multiobjective average shortest path problem, a bicriteria average

minimum cost flow problem is formulated allowing tradeoffs between total arc supply

and overall overage value.

1.4 Contributions Summary

1. Value Hierarchy of Transportation Mode Selection - Uses Value Focused Think-

ing (VFT) to build a construct capable of incorporating any factors deemed

important to transportation mode selection.
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2. A tutorial describing the necessary steps to use VFT for supply chain applica-

tions

3. Formulation of the multiobjective average shortest path problem - combines

VFT and the shortest path problem to create the multiobjective average shortest

path (MASP) problem or multiobjective average longest path (MALP) problem.

4. Algorithm to solve the MASP or MALP in O(nm).

5. Heuristic to estimate the MASP or MALP very accurately in O(m).

6. Formulation of the multiobjective average minimum cost flow problem - com-

bines VFT and the minimum cost flow problem to create the multiobjective

average minimum cost flow (MAMCF) problem.

7. Two heuristics to estimate the average minimum cost flow problem - These

heuristics combine both an average shortest path algorithm and scaling heuristic

with a maximum flow algorithm and solve in O(nmC) and O(mC), respectively.

This mimics the well known successive shortest path algorithms for solving the

minimum cost flow problem.

8. Formulation and estimate of a bicriteria average minimum cost flow problem

- The algorithm solves the MAMCF while using the weighted sum method to

make tradeoffs between value and the number of arcs traversed. Pareto optimal

solutions are generated allowing the decision maker to tradeoff increases in the

value obtained versus the number of arcs used.

9. Computational complexity proofs for the MASP, MALP, and MAMCF problems

showing instances where the problems are NP-complete and when solvable in

polynomial time.
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1.5 Organization

The dissertation is organized into 7 chapters. Chapter 2’s literature review cov-

ers multiobjective decision analysis, network optimization, multicriteria optimization,

computational complexity, and transportation mode selection. Chapter 3 is a tutorial

on Value Focused Thinking for Supply Chain Applications, targeted publication is the

Journal of Business Logistics. Chapter 4 is an article defining and solving the multi-

objective average shortest path problem. Targeted journal is the European Journal of

Operational Research. Chapter 5 is a journal article about the multiobjective average

minimum cost flow problem. Chapter 6 is an extension of these concepts describing

variants and further complexity proofs for the average minimum cost flow problem in

general. Finally, Chapter 7 summarizes and describes future research areas. The ap-

pendices include a conference proceedings presented at the military applications track

at the 2011 Western Decision Sciences Conference discussing potential uses in United

States Transportation Command (USTRANSCOM), a conference proceedings from

the 2011 Industrial Engineering Research Conference presented in the Multicriteria

Optimization track, and a 2012 Industrial & Systems Engineering Research Confer-

ence proceedings presented in the Military Applications track.
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II. Literature Review

The literature review begins with multiobjective decision analysis and a focus on

value focused thinking. Next, network optimization is expounded with a focus on the

minimum cost network flow problem and the shortest path problem. We also dis-

cuss research from the average shortest path problem and multiobjective minimum

cost flows and shortest paths. This leads into a discussion on multiobjective pro-

gramming, also called multicriteria optimization. Computational complexity theory

is then briefly described. Finally, we thoroughly examine measures used to make

transportation mode selection decisions since the methodology in this dissertation

applies directly to this problem.

2.1 Multiobjective Decision Analysis

Two of the most popular methods of capturing multiple qualitative and quan-

titative measures are the Analytic Hierarchy Process and Value Focused Thinking.

Decision analysis [16] is a powerful and widely used technique in Operations Research

([52],[19]), but recently has been defined further [59] as ”a set of quantitative methods

for analyzing decisions based on the axioms of consistent choice. This excludes tech-

niques such as AHP, fuzzy sets, MCDM, traditional math programming, and other

useful decision making techniques. Value-Focused Thinking and decision analysis

seek instead to aid in human decision making, not model the human decision making

process. The justification for this purpose is decision makers should desire to make

rational choices given any situation. The axioms of consistent choice from [65] where

� means some consequence c is preferred are:

1. (Transitivity) If ci � cj and cj � ck, then ci � ck

8



2. (Reduction) If the rules of probability can be used to show two alternatives have

the same probability for each ci, then the two alternatives are equally preferred.

3. (Continuity) If ci � cj � ck, then a p exists such that an alternative with a

probability p of yielding ci and a probability of 1-p of yielding ck is equally

preferred to cj.

4. (Substitution) If two consequences are equally preferred, one can be substi-

tuted for the other in any decision without changing the preference ordering of

alternatives.

5. (Monotonicity) For two alternatives that each yield either ci or cj, where ci � cj,

the first alternative is preferred to the second if it has a higher probability of

yielding ci.

These axioms hold true for many decisions, it can even be argued they hold for

any decision.

2.1.1 Value Focused Thinking.

2.1.1.1 VFT Overview.

VFT has several important benefits as shown in Figure 1 from [61], three of

which are uncovering hidden objectives, creating alternatives, and improving com-

munication; these don’t commonly come to mind in most decision support studies.

The pervasiveness of multiple alternatives lures decision makers away from thinking

about fundamental objectives, and traps them in paradigmatic thought processes.

By improving communication through the VFT modeling process, new ideas emerge,

objectives are uncovered, and alternatives are generated.

9



Figure 1. FIGURE: VFT BENEFITS

A list of suggested implementation procedures is always useful. [65] and [61] de-

scribe the steps in the VFT process rather generally, a more specific declaration of

events is given by [96] in Figure 2. This detailed process shows 10 essential steps in

a value model study. Problem identification (Step 1) can be more challenging than it

seems. Creating the value hierarchy (Step 2), developing measures (Step 3), creating

value function (Step 4), and weighting the hierarchy (Step 5) are critical to model

success. Following model construction is the generation (Step 6) and scoring (Step

7) of alternatives through deterministic analysis (Step 8). Because of the subjective-

ness in defining values and weights, a proper sensitivity analysis (Step 9) is essential

for a good analysis. Finally, conclusions and recommendations (Step 10) are help

communicate the results to decision makers.
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Figure 2. Steps in VFT Study

Two approaches are possible when building a hierarchy, bottom-up and top-down.

When alternatives to a decision problem are previously known, a bottom-up method

is used to establish ways they are different. The important ways in which alternatives

differ end up being the measures used to compare them. This ”bottom up” approach is

called such because the value hierarchy is built from the measures up to the objectives.

Conversely, a top-down approach begins with the fundamental objectives and works

down to the measures.

Keeney [61] defines the properties of a good value hierarchy as completeness, non-

redundancy, independence, operability, and small size. Completeness ensures that

every important objective and measure valued by the decision maker is accounted

for. A good hierarchy should have mutually exclusive or non-redundant measures;

large overlaps between measures are not preferred. This is inevitable in some cases

however. If measures must overlap, its important the decision maker is aware of

the implications on the model, this being the combined weights of the measures
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in the overall decision. In addition to non-redundancy and completeness, a value

hierarchy should be operable or understandable by all interested parties and small

in design. Another property is small size. This may seem non-intuitive as people

normally enjoy building complex models, even though model sparsity usually results

in a better solution. Smaller hierarchies are easier to communicate and usually have

enough information to make good decisions. The art of value modeling lies in the

ability to balance the defensibility and practicality of a model. The final property,

independence, requires the satisfaction of several mathematical assumptions. If the

assumptions fail, other models such as multiplicative or multilinear models may be

used. We only discuss 3 of the important mathematical requirements of the additive

value model in this section, more info can be found in [65].

Definition 1 A function v(x) is a value function if v(x′) > v(x′′) if and only if

x′ � x′′, where x′ and x′′ are specified but arbitrary levels of x.

In order to use this additive value model, measures must be preferentially indepen-

dent. We first discuss the corresponding tradeoffs condition that must hold when deal-

ing with two measures. Two measures X and Y hold to the corresponding tradeoffs

condition if: for any levels x1, x2, y1, and y2 of the measures, if (x1, y1) ∼ (x1−a, y1+b)

and (x2, y1) ∼ (x2− d, y1 + b), then for c such that (x1, y2) ∼ (x1− a, y2 + c) it is true

that (x2, y2) ∼ (x2 − d, y2 + c). This condition must hold for any x1, x2, y1, and y2.

Thankfully, for 3 or more measures, this need not be shown, only mutual preferential

independence is needed.

Definition 2 Preferential independence: Suppose that Y and Z are a partition

of X1, X2, ..., Xn, each Xi being in exactly one of Y or Z. Then Y is preferentially

independent of Z is the rank ordering of alternatives that have common levels for all

attributes in Z does not depend on these common levels. (The common levels do not
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have to be the same for different attributes, but the level of each Xi in Z is the same

for all alternatives.)

Given this, we can now define mutual preferential independence.

Definition 3 Mutual Preferential independence: A set of attributes X1, X2, ..., Xn

displays mutual preferential independence if Y is preferentially independent of Z for

every partition Y, Z of X1, X2, ..., Xn.

For proofs, see [65].

2.1.1.2 Measures and Objectives.

Determining good objectives is critical to the accuracy of the model. Initially, the

fundamental objectives of the problem must be identified. For instance, in a logistics

application such as supplier selection, the overall objective of one organization may

be to minimize costs while another seeks to maximize customer satisfaction. These

differing views on the purpose of supplier selection may affect the weighting and

value function discussed in the next section. It’s important to ask the decision maker

why he feels that an objective is important and what is trying to be accomplished

through that objective. Doing this ensures the decision maker thinks through the

problem completely, and drills down to the actual overall objective. Attainment of the

fundamental objective is achieved through further objectives called means objectives,

while achievement of the means objectives is gauged through measures. Measures

themselves are generally quite easy to generate; the difficulty comes in deciding which

measures should be included in the value hierarchy. Including every possible measure

ensures completeness but increases difficulty in weighting. Less measures are preferred

given they adequately represent the decision problem. When deciding what measures

to include, use the ”test of importance” [60], evaluations should only be included if for
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two given alternatives, a change in the measure could change the preference between

the two.

Types of measures are natural or constructed, and direct or proxy. Natural scales

need not be produced, that is they are ”naturally” occurring. Examples include cost in

dollars, container loads shipped, and time after due date. A constructed scale on the

other hand does not exist and must be developed for a measure if a natural scale isn’t

available or practical. Natural and constructed scales can be either direct or proxy.

Direct scales measure the direct attainment of an objective whereas proxy scales

measure the degree of attainment of an objective. Natural scales are clearly objective

in that a clairvoyant, able to see the future, will score an alternative identically, now

and in the future, unless the levels of that measure change with time. Constructed

scales are different. There needs to be a test for clairvoyance when setting levels on

these scales, allowing subjectivity into the model introduces noise. Simply allowing

an individual scorer to assign a value of high or medium based on personal preferences

creates a poor model, taking away from the advantages of using VFT.

A general hierarchy is provided in Figure 3 showing the breakdown of objectives,

measures, tiers and branches of the hierarchy, and the global and local weights dis-

cussed in Section ??.

Figure 3. General Value Hierarchy
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2.1.1.3 Assigning Values to Measures.

Eliciting values from a decision maker can be complicated. Single dimension

value functions (SDVF) are normally used to capture preferences for varying levels

of the measures, assigning each level of the function a value between 0 to 1 . These

functions can be monotonically increasing or decreasing. For instance, performance is

a monotonically increasing function because higher values are more desirable, whereas

cost is monotonically decreasing, because higher levels are less desirable. Two popular

SDVF’s [65] are piecewise linear and exponential. For an in depth look at values and

preference functions see Keeney and Raiffa [60]. Continuous measures are captured

by either the piecewise linear or exponential functions, preferable the exponential,

depending on the preferences of the decision makers. For cases where measures are

not continuous, or preferences do not match the exponential function, [65] suggests

using the piecewise linear SDVF.

When measure levels are discrete, a piecewise linear SDVF is best. Values are

assigned to different levels of the measure. See Figure 5 for an example with of 5

levels and values. Setting the scales up is simple as well using three steps:

1. Place each value increment in order - smallest to largest value increment

2. Scale each value increment as a multiple of the smallest value increment (eg.

2:1 or 10:1 or 4:1)

3. Sum the value increments to one and solve for the smallest value increment

Many of the measures we encounter are continuous in nature. The exponential

SDVF is equipped to handle preferences on a continuous scale and is easy to explain

to a decision maker. Initially, as with the piecewise linear SDVF, high and low levels

need definition. For monotonically increasing measures, the continuous exponential

function is
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Figure 4. Exponential Value Function
Figure 5. Piecewise Linear Value Function

vi(xi) =


1−e−(xi−xL)/ρ

1−e−(xH−xL)/ρ ρ 6= Infinity;

xi−xL
xH−xL

, otherwise.
(3)

where xH is the most preferred level (assigned a value of 1), xL is the least preferred

level (assigned a value of 0), xi is the level of the ith measure, ρ is an unknown

parameter, and vi(xi) is the value of the ith measure at level xi.With this equation, any

continuous measure is valued, however the equation must be solved for the unknown

parameter ρ. Unfortunately, no closed form solution exists. In practice, ρ can be

estimated if the decision maker can assign a value to a mid-level between xH and xL.

Figure 4 shows the shape of the exponential value function for differing levels of ρ.

See p. 68 in [65] for methods to find ρ.

2.1.1.4 Determining Weights.

Next, weights must be assigned to each of the measures. There are several means

to determining weights, AHP, swing weights, direct assessment, or group weights to

name a few. Note, AHP can be used to determine weights for a value hierarchy but

this differs from using it to evaluate alternatives. An actual AHP model requires the

decision maker to make pairwise comparisons across all combinations of the possible
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alternatives, whereas VFT provides a value for each of any large number of alterna-

tives. The AHP technique in this case is used only for weights. Measures can weighted

globally or locally; the former compares all measures simultaneously, the latter looks

at each measure in the context of its means objectives. Local weighting is preferred as

it tends to be easier for decision makers to weight measures within objectives rather

than across all objectives. In turn, this provides more accurate weights, and global

weights are easily calculated from local weights. Either way, the global weights are

needed to calculate the overall value function. wi is the notation used for the weight

of measure i.

An easy method to implement for determining weights is direct assessment. This is

accomplished through examining the measures from one means objective and weighing

tradeoffs between them. The least important measure is assigned a 1, the remainder

of the measures are assigned numbers based on how much more important they are

than the least important measure. A measure that is twice as important as the least

important measure is given a value of 2, call it ri for measure i, and so on. Since the

weights must sum to one, that is
∑
wi = 1, these values must be scaled to a decimal

between 0 and 1. To determine a weight wi for measure i, take its successive ri and

divide by the sum of all the ranks, that is

wi =
ri∑
ri
. (4)

. This works well for most cases, if consensus isn’t reached, a more robust method

should be used, either swing weights or AHP.

The standard swing weights method for determining decision maker weights is

popular. Advanced swing weight methods have been developed as well but are not

covered here, see for instance Parnell’s method [83] which uses a matrix like that in

Figure 7. The standard method begins by building a table like that in Figure 6, where
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each of the measures 1 through n are set at high to create a list of n hypothetical

alternatives. Where one measure is set to high, the rest of the measures are set to

their lowest level. Next, each of these alternatives are ranked from 1 to n, with 1

representing the best alternative and n the worst case.

Following the ranking assignments, each measure is assigned a rate. The baseline,

or worst alternative, is assigned a rate of 0 and the highest ranking measure is assigned

a weight of 100. The decision maker is then asking the following questions: how much

less satisfaction do you get from swinging a lower ranked measure versus swinging the

highest ranked measure?; If swinging the top ranked measure from low to high gives

100% satisfaction, what percentage satisfaction do you get from swinging the lower

ranked measure?. After assignment of all rates, the weight is calculated as a ratio of

Ratei∑n
i=1Ratei

. (5)

Figure 6. Swing Weights Standard Method

Figure 7. Swing Weights Matrix Method

The AHP method of determining weights is not covered here, as applications are

plentiful for logistics. Application is similar to the methods used in a popular AHP

supplier selection application [45], however the AHP is NOT used to rank alternatives.
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For en extensive list of application papers see [50]. With weights and values for each

of the measures defined, we can calculate the overall value of each of the alternatives.

2.1.1.5 Mathematical Formulation of the Model and Scoring.

The value of an alternative is given by inserting levels of the weights wi and the

values of the levels of each measure xi, or vi(xi). Doing this for each alternative

creates the additive value model:

vj(x) =
∑

wivi(xij) (6)

for i = 1, 2, ..., n measures and j = 1, 2, ...,m alternatives, where vi(xij) is the

single dimension value function of measure i for alternative j, wi is the weight of

measure i, and vj(x) is the multiobjective value for alternative j.

After inserting all inputs into the equation above, or performing Deterministic

Analysis as referred to in Figure 2, an overall score is obtained for each alternative

being compared. The meaning of the final score is straightforward, it’s the amount

of value the alternative provides as a solution to the problem.

2.1.1.6 Sensitivity Analysis.

Because of the subjectivity of the VFT modeling process, a requisite sensitivity

analysis is needed to reveal the effects of changes in value functions and weighting

schemes, primarily weighting schemes as these produce greater changes. The idea

is to vary the weights wi of Equation 6 for each evaluation measure and determine

at what point changes in the most valued alternative occur. Several techniques are

currently used for sensitivity analysis including math programming [79], algorithms

[11], and simulation [4], [55], [73]. Historically, sensitivity analysis has been limited to

one-way analysis, changing only one weight at a time [15]. However, new techniques
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are emerging (TRIAGE Method, COSA method, VBR Method) that advance the

ability to conduct sensitivity analysis.

2.2 Network Optimization

Modeling an optimization problem as a network allows the exploitation of special

structures in order that faster solutions be found. Several structures exist, this section

provides background on the shortest path and minimum cost flow problems. All

minimum cost flow and shortest path problems are simply special cases of the linear

program, however in many cases faster algorithms can be used in place of general LP

methods.

Network optimization in the modeling of a transportation network is common,

many textbooks use transportation as an application [3], [98]. Multiple articles apply

network optimization to the intermodal transportation problem as well. [46] models

the multimodal multiproduct network for strategic planning and minimizes cost, yet

they do not to consider multiple objectives, especially intangibles. Many papers call

for increases in the number of factors incorporated into the transportation mode

selection decision.

2.2.1 Shortest Path Problem.

Assume a graph G = (V,E) to be a directed network with |V | = n vertices and

|E| = m edges. Each edge or arc (i, j) ∈ E has some cost ci,j and flow xi,j associated

with its use. The source and sink vertices are designated s and t, respectively.

2.2.1.1 Linear Programming Formulation.

The general shortest path problem is:
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min z =
∑

(i,j)∈E

ci,jxi,j

s.t.
∑

(i,j)∈E

xi,j −
∑

(j,i)∈E

xj,i =


1, if i=s;

−1, if i=t;

0, otherwise ∀i

xi,j ≥ 0 ∀ (i, j) ∈ E

(7)

where xi,j is the flow from vertex i to j and ci,j is the cost of a unit of flow from

i to j. This is easily solved using the simplex method or any other LP algorithm.

However, since it maintains a unique structure, faster algorithms are available. Label

setting algorithms are most efficient in solving shortest path problems, the most

popular being Dijkstra’s algorithm [3]. Even faster algorithms exist if the graph has

the property of being acyclic, or without cycles.

2.2.1.2 Reaching Algorithm for Directed Acyclic Graphs.

A dynamic programming algorithm that solves the directed acyclic graph (DAG)

in linear time O(m) is called the Reaching Method. It begins with a topological sort

of the nodes and labels each vertex successively. Easily adaptable to the longest or

shortest path, the algorithm configured for the longest path:

Step 1: Topologically order the DAG G

Step 2: For i = 1, ..., n, set dist(i)=0

Step 3: For i = 1, ..., n− 1, for each edge V (i), u outgoing from V (i), if dist(Vi) +

G(Vi, u) > dist(u), then set dist(u) = dist(Vi) + G(Vi, u)
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Step 4: dist(t) is the longest path to the sink t

The algorithm above is easily modified to gather the shortest path to every node as

well. This is the underlying dynamic programming approach behind the proposed

scaling heuristic.

2.2.1.3 Non-Additive Shortest Paths.

The idea of non-additive paths is a relatively recent development in the network

optimization literature. Research motivation comes from the fact that not all network

paths are additive in nature, that is a path cost may be some function other than

simply the addition of all the arcs costs. The methods were sparked by the traffic

equilibrium problem and are discussed in [40], [1], and [41]. There are very few

citations to these articles, likely because motivation is lacking. The average path is

actually just a special case of the non-additive shortest path discussed in [40] and [1],

where the function is simply the sum of arc costs of the path divided by the number

of arcs. Because of its simple structure, faster solutions should be attainable.

2.2.1.4 Average Shortest Path Length.

[108] lays out the foundation for determining the optimal average path length

through the path length minimization algorithm. This algorithm pursues the optimal

path by determining the best average path of cardinality j at each node. Note, the

algorithm is only useful in directed acyclic graphs.

First, each vertex is assigned a rank according to its maximum cardinality (number

of arcs) of a path from s to the vertex. The source, s, is obviously assigned a rank

of 0 and the sink, t has the highest rank. Vertices are numbered according to their

rank, starting with s, and numbering vertices with equal ranks arbitrarily. So, s is
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numbered 1, t is numbered |U | (number of vertices) and for every arc e(u, v) the

vertex u is assigned a smaller number than the vertex v.

Define G = (U,E). Let u be a vertex on some path from source s to sink t. Only

the shortest path with cardinality j can be part of the shortest average arc length

path from s to t. Each vertex u ∈ U is next assigned a vector L(u) of length |U |. The

jth element of L(u), Lj(u) with (0 ≤ j ≤ |U |−1), is the minimum length of any path

from s to u with cardinality j. Πj(u) denotes the minimum length path or paths.

Since G(U,E) is acyclic, the cardinality of a path cannot be greater than |U | − 1. If

no path exists for a cardinality, the path is assigned ∞. Another vector Pu of length

|U | is associated with u, whose jth element Pj(u) is the last vertex preceding u on

Πj(u). This is the vertex v for which Lj−1(v) + l(e(v, u)) = Lj(u). If Lj(u) = ∞,

then Pj(u) = 0

Starting at s, a new vertex is marked at each iteration until t is reached. Once

a vertex u is labeled, the length of the shortest path from s to u is known for every

cardinality between 0 and |U | − 1. The sets of arcs entering and leaving u ∈ U are

denoted Γin(u) and Γout(u). The algorithm is as follows:

Step 0: Initialization. Set L0(s) = 0 and Lj(s) = ∞, 1 ≤ j ≤ |U | − 1. Mark s

and set T = U − {s}. For every u ∈ T set Lj(u) = ∞, 0 ≤ j ≤ |U | − 1. For every

u ∈ U define Pj(u) = ∅, 0 ≤ j ≤ |U | − 1.

Step 1: New Vertex Selection. Find a vertex u ∈ T for which all the tail vertices

of the arcs in Γin(u) are already marked. Such a vertex must exist since G(E,U) is

an acyclic digraph with a single source and a single sink whose vertices are numbered

as described above.

Step 2: Updating the minimum path lengths. Determine the shortest path length
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vector Lu by considering every vertex v for which e(v, u) ∈ Γin(u) as follows.

Lj(u) = min{Lj−1(v) + l(e(v, u))|e(v, u) ∈ Γin(u)}, 1 ≤ j ≤ |U | − 1. (8)

Let v∗ be the vertex obtained when solving 8 for given u and j. Then, set Pj(u) = v∗.

Step 3: Updating the set of marked vertices. Mark u and set T = T − {u}.

Step 4: Termination Test. If u = t then go to Step 5, else go to Step 1.

Step 5: Retrieving the minimum average arc length path. Upon termination, ev-

ery Lj(t) ≤ ∞ is the length of the shortest path from s to t among all the paths of

cardinality j. For every j satisfying Lj(t) = ∞ there exists no path of cardinality j

from s to t. Evidently, min{Lj(t)/j|1 ≤ j ≤ |U | − 1 yields the minimum average arc

length for any path from s to t. Let j∗ be the cardinality of the path for which the

minimum average arc length was obtained. Then, the desired path is retrieved by

traversing backwards from t to s as follows. We start from t and go backwards to the

vertex stored in pj∗(t). We then go backwards to the vertex stored in Pj∗−1[Pj∗(t)]

and continue in the same manner until s is reached.

2.2.1.5 Discussion of Outputs of Wimer’s Algorithm.

As noted above, the algorithm produces several matrices, we add information in

this section for clarity. The first matrix is an L matrix as shown in Table 1, where

Lj(u) is the shortest path from the source s to vertex u of cardinality j, assigned

some value or ∞ if the path doesn’t exist (−∞ for the max problem).

A matrix
∏

j(u), representing the path that yields the elements of the L matrix

in Table 1, is shown in Table 2. Table 3 shows an example
∏

matrix.

Next, a P matrix is generated indicating the vertex preceding u for each node u

for each cardinality j. Table 4 gives the P matrix. An example is given in Table 5
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Table 1. L Matrix produced by Wimer’s Algorithm

# of Arcs j
1 2 3 . . . q

2 L1(2) L2(2) L3(2) . . . L|U |−1(2)
3 L1(3) L2(3) L3(3) L|U |−1(3)

Node # u 4 L1(4) L2(4) L3(4) L|U |−1(4)
...

...
. . .

...
N L1(N) L2(N) L3(N) . . . L|U |−1(N)

Table 2.
∏

Matrix produced by Wimer’s Algorithm

# of Arcs j
1 2 3 . . . q

2
∏

1(2)
∏

2(2)
∏

3(2) . . .
∏
|U |−1(2)

3
∏

1(3)
∏

2(3)
∏

3(3)
∏
|U |−1(3)

Node # u 4
∏

1(4)
∏

2(4)
∏

3(4)
∏
|U |−1(4)

...
...

. . .
...

N
∏

1(N)
∏

2(N)
∏

3(N) . . .
∏
|U |−1(N)

Table 3. Example
∏

Matrix

# of Arcs j
1 2 3 . . . q

2 1-2 ∞ ∞ . . . ∞
3 1-3 1-2-3 ∞ ∞

Node # u 4 1-4 1-2-4 1-2-3-4 ∞
...

...
. . .

...
N 1-N 1-5-N 1-4-8-N . . . 1-3-5-7-...-N

that follows the example
∏

matrix in Table 3.

Table 4. P Matrix produced by Wimer’s Algorithm

# of Arcs j
1 2 3 . . . q

2 P1(2) P2(2) P3(2) . . . Pq(2)
3 P1(3) P2(3) P3(3) Pq(3)

Node # u 4 P1(4) P2(4) P3(4) Pq(4)
...

...
. . .

...
N P1(N) P2(N) P3(N) . . . Pq(N)

Assign another matrix Z, call each of its elements Zj(u), where each element is

25



Table 5. Example P Matrix

# of Arcs
1 2 3 . . . q

2 1 0 0 . . . 0
3 1 2 0 0

Node # 4 1 2 3 0
...

...
. . .

...
N 1 5 8 . . . 7

the arc xi,j combining the vertex preceding u(Pj(u) from Table 4) with u. This gives

xi,j = x(Pj(u),(u)). Refer again to the example
∏

matrix in Table 3, an example Z

matrix is given in Table 6.

Table 6. Example Z Matrix

# of Arcs j
1 2 3 . . . q

2 x1,2 ∞ ∞ . . . ∞
3 x1,3 x2,3 ∞ ∞

Node # u 4 x1,4 x2,4 x3,4 ∞
...

...
. . .

...
N x1,N x5,N x8,N . . . x7,N

Every remaining arc in Z from Table 6 is part of at least one optimal path of some

cardinality j. One final perturbation to the L matrix in Table 1 is needed, divide

each element by its cardinality j. Table 7 gives the resulting matrix, call it LJ , the

best average value from the source s to the node u.

Table 7. LJ Matrix produced by Wimer’s Algorithm

# of Arcs j
1 2 3 . . . q

2 L1(2)
1

L2(2)
2

L3(2)
3

. . . Lq(2)

q

3 L1(3)
1

L2(3)
2

L3(3)
3

Lq(3)

q

Node # u 4 L1(4)
1

L2(4)
2

L3(4)
3

Lq(4)

q
...

...
. . .

...

N L1(N)
1

L2(N)
2

L3(N)
3

. . . Lq(N)

q
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With this algorithm we’ve essentially removed any arcs that are NOT part of any

of the optimal paths for each cardinality j. The final row of the Matrix in Figure 7

is the shortest average path to node N in some number of arcs.

2.2.1.6 Multiobjective Shortest Paths.

Research in multiobjective optimization for the shortest path has traditionally

been limited to problems with 2 or 3 objectives, as more objectives make the problem

intractable. This is the beauty of the additive value function, many objectives are

incorporated into one function. A downfall most authors allude to is the decision

makers’ value function must be known a priori. Several authors [27] [100] [72] [26]

relay the importance and scarcity of treatment in the literature of the multiobjective

shortest path. See [35] for complexity proofs and further discussion.

2.2.2 Minimum Cost Network Flow Problem.

Assume a directed acyclic graph G = (V,E). The linear programming formulation

of the general minimum cost flow problem is:

min z =
∑

(i,j)∈E

ci,j,xi,j

s.t.
∑

(i,j)∈E

xi,j −
∑

(j,i)∈E

xi,j = s(i) ∀ i ∈ N

li,j ≤ xi,j ≤ ui,j ∀ (i, j) ∈ E

(9)

where xi,j is the flow from vertex i to j, ci,j is the cost of a unit of flow from i to j, li,j

is the lower bound on the flow from i to j, ui,j is the upper bound on the flow from
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i to j, and s(i) is the supply or demand at node i. Just as with the shortest path

problem, the simplex algorithm or any other LP algorithm will solve the minimum

cost flow problem. However, due to its special structure, much faster algorithms have

been developed.

2.2.2.1 Solution Algorithms.

The linear structure of the minimum cost network flow (MCNF) problem allows

the use of the Simplex method. However, when dealing with large scale problems,

the simplex method is inefficient as its theoretical run time is exponential. Speedier

adaptations of the simplex method exist for the MCNF problem. More popular are

successive shortest path algorithms, where an implementation of Dijkstra’s algorithm

is run perhaps, and this path is assigned flow up to its capacity. The shortest path

algorithm is repeated while updating the arc capacities. For directed acyclic graphs,

the reaching algorithm from Section 2.2.1.2 can be used successively. Because the

constraint set of the MCNF problem is unimodular in nature, any LP algorithms

produce integer solutions.

2.2.2.2 Average Minimum Cost Network Flow Problem.

Although this problem is never formally introduced in the literature, a few articles

mention it in passing. [39] creates algorithms to find the weighted minimal cost flows,

which could be useful for computing the minimum average cost but is computationally

expensive. Additionally, it’s only cited 3 times and only cited by the authors in their

other papers. Another minimal average cost flow variant was first formulated to

minimize a total cost, consisting of a fixed cost of using a network plus a variable

cost per unit of flow, divided by the total flow [12]. These do not address the average

minimum cost flow problem in this dissertation.
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2.2.2.3 Multiobjective Minimum Cost Network Flow Problem.

A comprehensive review of algorithms and research on the multiobjective min-

imum cost flow (MMCF) problem reveals a threshold of two objectives for most

algorithms [47]. Hamacher [47] unveils the need for algorithms solving more than 2

objectives.

2.2.2.4 Transportation Problem.

Transportation problems are a special case of the minimum cost flow problem,

where each of the nodes can be classified into one of two sets, call them N1 and

N2, with m and n nodes respectively. Let xij and cij represent the amount shipped

and cost of shipment, respectively, from a supply location i to a demand location j.

Assuming supply equals demand, the basic LP formulation of transportation problem

is

min
m∑
i=1

n∑
j=1

cijxij

s.t.
n∑
j=1

xij = ai ∀i

n∑
j=1

xij = bj ∀j

xij ≥ 0

(10)

where ai is the total supply and bj is the total demand.
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2.2.3 Fixed Charge Problems.

The Fixed Charge Problem, initially formulated by Hirsch and Dantzig [49] [97]

and solved using a variety of approaches [78] [18] [31] [106], is a generalization of

the fixed charge transportation problem (FCTP) and the fixed charge network flow

problem (FCNFP). The FCTP and FCNFP are also a special case of the minimum

cost flow problem (MCFP), see [48]. Several other names exist as well and there are

multiple variations of the FCNFP.

The capacitated multicommodity fixed-charge network design (CMND) (or capac-

itated single-facility network design problem) problem is similar to the fixed charge

network flow problem (FCNFP) [13], however multiple commodities are considered.

Due to the similarity of their structure, solution techniques may complement one

another. The methods developed for network design problems are similar to our

multicriteria formulations [70] [21] [22].

Costa’s paper [20] summarizes applications of Bender’s decomposition on the fixed

charge network design problem and all its variants. Its application to network design

problems is rare but successful in the reviewed applications. She discusses applications

of Benders to the slightly more complicated capacitated single-facility network design

problem with multiple commodities, but not to the fixed charge network flow problem.

2.3 Other General Optimization Areas

This section discusses other relevant used throughout the dissertation including

general multiobjective programming, large scale optimization, and sensitivity analy-

sis.
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2.3.1 Multiobjective Programming.

Multiobjective programming, also called multicriteria optimization, multiobjec-

tive optimization, and multicriteria programming, gives the added benefit of exam-

ining pareto optimal or efficient solutions [35]. Decision makers are able to make

trade-offs between competing objectives and see the outcomes of these tradeoffs. [35]

defines the types of efficiency for a feasible solution x̂ ∈ X:

• weak efficiency - no other x ∈ X such that f(x) < f(x̂)

• strict efficiency - no other x ∈ X, x 6= x̂ such that f(x) ≤ f(x̂)

• proper efficiency - there is a real number M > 0 such that ∀ i and x ∈ X

satisfying f(x) < f(x̂), there exists an index j such that f(x̂) < f(x) and

f(x)−f(x̂)
f(x̂)−f(x) ≤ M.

The most popular method of generating the efficient set or set of pareto optimal

solutions are though scalarization techniques, the most common being:

• Weighted sum method - good for convex problems

• Epsilon Contraint, Hybrid, Elastic Constraint - good in the absence of convexity

• Benson’s method, compromise programming, achievement function method

The general multiobjective program is:

min (f1(x), ..., fk(x))

st gj(x) ≤ 0

for j = 1,...,m constraints and k = 1,...,p objective functions.
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2.3.1.1 Multiobjective Linear Programming.

For the multiobjective linear program (MOLP), the objective functions from the

general multiobjective problem in Formulation 2.3.1 become:

fk(x) = cTk x for k = 1,...,p.

Adding slack variables to the constraints gives:

gj(x) + sj = 0 for j = 1,...,m,

and the constraints can now be written in matrix form:

Ax+ Is = b

Thus, the general multiobjective linear program is:

min Cx

st Ax+ Is = b

x ≥ 0

where

A - m× n matrix

I - m×m identity matrix

x ∈ Rn

s ∈ Rm

C - p× n matrix, that is C =



cT1

cT2
...

cTp


X = {x ∈ Rn : Ax+ Is = b, x ≥ 0, s > 0} is the feasible set in decision space
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Y = {Cx : x ∈ X} is the feasible set in objective space

The main assumption with multiobjective linear programming is if Xk := {x̂ ∈

X : cTk x̂ ≤ cTk x ∀ x ∈ X}, then no x̂ ∈ X such that x̂ ∈ Xk ∀ k = 1, 2, ..., p. That

is, no unique solution minimizes all k objective functions or the intersection of the

solution sets is ∅,

⋂p
k=1Xk = ∅.

Therefore, a true MOLP possesses competing objectives, so yI, the ideal point, is not

in the objective space feasible set Y .

2.3.1.2 MOLP Efficiency.

Definition 6.2. Let x̂ ∈ X be a feasible solution to a MOLP and let ŷ = Cx̂.

1. x̂ is called weakly efficient if there is no x ∈ X such that Cx < Cx̂; ŷ = Cx̂ is

called weakly nondominated.

2. x̂ is called efficient if there is no x ∈ X such that Cx ≤ Cx̂; ŷ = Cx̂ is called

nondominated.

3. x̂ is called properly efficient if it is efficient and if there exists a real number

M > 0 such that for all i and x with cTi x < cTi x̂ there is an index j and M > 0

such that cTj x > cTj x̂ and

cTi x̂− cTi x
cTj x− cTj x̂

≤M

.
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Lemma 6.4. The feasible sets X in decision space and Y in objective space of a

MOLP are convex and closed.

2.3.1.3 Weighted Sum Method.

Letting λ ∈ Rp
≥, the weighted sum linear program LP(λ) is

min λTCx

subject to Ax = b

x ≥ 0.

Theorem 6.6. Let x̂ ∈ X be an optimal solution of the weighted sum LP.

1. If λ ≥ 0 then x̂ is weakly efficient.

2. If λ > 0 then x̂ is efficient.

A few important observations regarding the MOLP are:

• A single nondominated point can be identified by many different weighting

vectors λ.

• A single weighting vector λ can identify many nondominated points.

• The linearity of the constraints and objectives appears to make it possible to

find all nondominated points with a finite number of weighting vectors, because

X and Y are polyhedra.

In conclusion, we present Theorem 6.11 from [35]. A feasible solution x0 ∈ X

is an efficient solution of a MOLP if and only if there exists a λ ∈ Rp
> such that

λTCx0 ≤ λTCx for all x ∈ X. Ehrgott proves this using the optimization problem
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of Benson’s method and its dual. He concludes that every efficient solution in a

multiobjective linear program is properly efficient (XE = XpE ⇒ YN = YpN) and we

can find all efficient solutions by the weighted sum method.

2.3.2 Large Scale Optimization Solution Methods.

When solving real world problems, the number of variables is sometimes too large

to handle with normal optimization algorithms. This led to the discovery of methods

of decomposition as well as other ideas to break large problems into manageable

subproblems, and subsequently solve them to create faster solution methods.

2.3.2.1 Bender’s Decomposition.

J.F. Benders first developed his decomposition method in the early 60’s [7], it

was generalized in the early 70’s by Geoffrion [43]. Lasdon’s book on Large Scale

Optimization [67] provides overviews of Bender’s decomposition and other column

generating techniques such as Dantzig-Wolfe Decomposition. Bender’s decomposition

exploits a special structure present in some mixed integer linear programs and makes

it possible to solve large scale problems more efficiently. Most commonly, two blocks

are present, representing variables x in a linear program and variables y in an integer

or binary program. It’s also feasible to have a linear and non-linear partition. By

partitioning an otherwise intractable problem into two separate potentially tractable

problems, we can iteratively solve the two partitioned problems to converge towards

optimality of the intractable master problem. When partitioning, we are either solving

for x or y separately, not simultaneously.

Bender’s decomposition breaks the problem into two parts, the relaxed master

problem Pr and the dual subproblem D1. The relaxed master problem is solved first

giving dual variable values that feed into the dual subproblem. The dual subproblem

35



is then solved to optimality and the dual variables are used to make Bender’s cuts in

the relaxed master problem. The relaxed master problem is essentially becoming less

and less relaxed until optimality is reached.

Consider a problem Px

min v = cx+ f(y)

s.t. Ax ≥ b− g(y)

x, y ≥ 0

The Bender’s decomposition algorithm is as follows:

Step 0 : Choose some feasible solution u0 for the dual subproblem D1. If no feasible

solution exists, Pr doesn’t have a feasible solution. Else, set r = 1 and proceed

to Step 1.

Step 1 : Solve the relaxed master problem Pr

min z

s.t. z ≥ f(y) + uk(b− g(y)) for k = 0, 1, ..., r − 1

u, y ≥ 0

Let zr be the optimal objective function value with yr the optimal solution. Set

z = zr, go to step 2.
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Step 2 : Solve the dual LP D1 after substituting yr for y

maxw = u(b− g(yr))

s.t. uA ≤ c

u ≥ 0.

Let ur be the optimal solution. Then z = f(yr) + ur(b− g(yr)). Go to Step 3.

Step 3 : If z=z then yr is optimal and proceed to Step 4. Else, set r=r+1 and return

to Step 1.

Step 4 : Let yr = y∗ and solve the original problem Px

min v = cx+ f(y∗)

s.t. Ax ≥ b− g(y∗)

x ≥ 0

The optimal solution is labeled x∗. The overall optimal solution is (x∗, y∗).

This boils down to the following. Set some feasible solution to the initial Dual sub-

problem. Solve the relaxed master problem using this initial solution and obtain an

optimal integer solution. Plug this optimal integer solution into the dual subprob-

lem and solve to obtain an updated solution to the Dual subproblem. Continue this

process until the two objective function values are equal. Once this occurs, plug the

optimal integer solution into the original problem and solve, this gives the optimal

linear variables. The optimal integer and linear variables are the optimal solution to

the original problem.
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2.3.3 Sensitivity Analysis.

Sensitivity analysis is an important part of decision making. Most mathematical

programming problems are an estimation of reality, therefore knowledge about the

sensitivity of the parameters is needed. Different methods exist for each type of

mathematical programming problem, LP, IP, MILP, and NLP. LP sensitivity analysis

is the most researched and more systematic in nature than IP’s and NLP’s. While

systematic methods do exist for IP, MILP, and NLP programming problems, many

times they’re are handled on a case by case basis. In many cases, it’s more practical

to analyze sensitivity through intuition rather than using a systematic approach. See

Fiacco’s book [37] for non-linear sensitivity analysis methods.

2.3.3.1 Mixed Integer Linear and Integer Programming Sensitivity

Analysis.

We are interested in changes to the objective function only. Changes in value

function weights will not affect the constraint matrix or right-hand side, the network

structure and its variables are another problem. The constraint matrix and right-

hand side therefore remain fixed while the objective function is varied and changes in

the optimal basis are observed.

The literature on MILP and IP sensitivity analysis is most prevalent in the 1970’s

and 80’s, and is composed of a relatively small number authors. Applications and

variations on the techniques are also scattered across journals outside the OR litera-

ture stream. There is also a strong mathematical basis in the mathematics literature.

In this section, I focus on the OR literature stream to discuss the possible tech-

niques, but I believe a survey paper would certainly be warranted in this topic area.

With a foundational base in the operations research literature, less known techniques

in the mathematics literature, applications and variations scattered throughout the
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engineering literature, and difficult to implement procedures, a book or survey pa-

per on the MILP and IP sensitivity analysis could be beneficial to the literature. I

haven’t seen any textbooks summarizing or explaining the methods. The techniques

are uncommon in IP solvers as well.

IP and MILP sensitivity analysis is not as popular as LP sensitivity analysis due to

the inherent difficulties present. For instance in LP problems, necessary and sufficient

conditions ar available to prove optimality. In integer programming for the most part,

some algorithm must be run to test for optimality.

General discussions on parametric analysis for MILP sensitivity analysis are Ge-

offrion’s article in Management Science [44] and Jenkins [54]. In Table 8, I come up

with a rudimentary classification scheme. This is just an initial stab at the themes

I noticed, there are probably several others and many other important papers. The

categories defined are branch and bound, cutting plane, duality theory, and other.

Other includes various techniques such as inference based, binary decision diagram,

heuristics, and specific methods based on the problem being solved. Most of these

methods are mathematical in nature, although [64] introduces shadow prices for in-

teger programming problems.

Branch and bound techniques for parametric programming assume a branch and

bound algorithm is being used to solve the problem. The idea is to collect information

as the algorithm is running in order to assist with the sensitivity analysis, or to

carry out the sensitivity analysis during the running of the algorithms. Cutting

plane methods utilize the same idea, collect information during the execution of an

algorithm and use it for postoptimality analysis. Cutting plane methods begin by

relaxing the integrality constraints of the programming program. New cuts are then

added to the resulting LP, ”cutting” up the feasible region to get closer the original

integer optimal solution.
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Table 8. Classification of Sensitivity Methods for Combinatorial Optimization

IP Mixed IP/Binary Linear Binary 0-1
Branch and Bound [93] [2]

Cutting Plane [66] [9] [111] [66] [51] [17]
Duality Theory [95] [64] [110] [24]

Implicit Enumeration [86] [87] [84]
Other [29] [33] [53] [75] [85]

2.4 Computational Complexity

This section provides terminology used throughout the dissertation, for a thorough

review of complexity theory, see [42]. Computational complexity theory arose out of

the need to classify problems based on solution time and tractability. Problems are

classified into two classes, P and NP. A problem is said to intractable and in NP

if it cannot be solved in polynomial time using a non-deterministic or deterministic

Turing machine. A problem is said to be tractable and in P if it can be solved with

an algorithm bounded by a polynomial in the size of its input or in polynomial time

using a deterministic Turing machine. A problem is considered NP-complete if the

problem is in NP and if every other problem in NP can be reduced to it. Karps paper

is the first to define a number of NP-complete problems [58]. In order to show a

problem is NP-complete, all that needs to shown is a polynomial transformation to

another NP-complete problem. If NP-completeness is shown, a polynomial algorithm

does not exist for the problem unless P=NP.

2.5 Transportation Mode Selection

Articles modeling intermodal routing are scarce [10]. Other papers exist that

optimize regional to international transportation network daily decision making, we

focus on the strategic decision though. Large companies or organizations such as Dow

Chemical and the U.S. Air Force rarely make decisions on a daily or product by prod-
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uct schedule. Rather, they lock in yearly rates with a carrier based on the estimated

tonnage to be transported. Therefore, the strategic decision chooses ”contract” car-

riers for long-term partnerships; thus the need to model schedules is negated. Look

at [10] for one detailed model of intermodal transportation.

Perhaps the most comprehensive of the articles on measures in transportation

mode selection is Cullinane and Toy’s content analysis of mode choice [25]. The

majority of studies utilize focus groups, interviews, and researcher hypotheses, this

study utilizes a content analysis methodology to scientifically justify the attributes

important in transportation mode selection. The factors and their descriptions are

given in Figure 8.

Figure 8. Mode Selection Factors from [25]

The literature is then searched using content analysis; rankings are shown in

Figure 9.
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Figure 9. Mode Selection Factors Ranking from [25]

The five most influential factors are

• Cost/price/rate

• Speed

• Transit Time Reliability

• Characteristics of the Goods

• Service(unspecified)

Dobie’s article on the core shipper concept looks at important attributes of trans-

portation from both the carrier and shippers perspective [32]. Her analysis identifies

common factors discussed in other intermodal transportation articles.

A comprehensive look of the transportation mode through a survey analysis is

presented in [99]. Surveys are sent to three industry groups including low perish-

able items (canned fruits and vegetables), toiletries(perfumes, cosmetics, others), and

electronics(radio and t.v. transmitting, signaling, and detection equipment). This

captured groups ranging from low density/low volume/low value to high density/high
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volume/high value items. Firms were chosen in part due to their closeness to large

metropolitan areas and availability of a variety of transportation mode choices.

The most influential situations causing modal preferential changes as identified

through the survey are:

• Desire to Improve Customer Service

• Deterioration of Service Provided by Mode

• Desire to Reduce Overall Distribution Costs

• Poor Pickup and Delivery by an Existing Mode

• Customer Complaints

• Desire to Reduce Transit Time

• Changing Needs of Customers

• Unsatisfactory Claims and/or Loss Experience

These give insight into the importance of carrier motivations and performance. A

list of multiple selection criteria is also given, a sample of which we give here:

• Consistent, On-Time Pickup and Delivery

• Freight Charges

• Time-in-Transit

• Points Served by Mode, Including Routing Authority

• Frequency of Service

• Loss and/or Damage History
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• Timely Acceptance of Shipments of All Sizes

• Door-to-Door Delivery

• Shipment Tracing Capability

• Prompt Claim Service

[105] uses a theory of reasoned action (TRA) methodology to determine important

selection criteria. They claim the TRA model is useful in predicting behavior in

choosing alternatives for transportation. Recent terrorist attacks have heightened

the importance of 3 objectives in mode selection: reducing transport cost; increasing

carrier preparedness in case of unforseen events; and increasing carrier security. Figure

10 compares the traditional method with the TRA method by mean importance.

Figure 10. Mode Selection Factors Ranking from [105]

Witlox and Vandaele [109] use a stated preference approach to determine utility

functions of the six most important factors in transportation mode selection. They

discuss how the weight of each factor changes with the type of product being shipped

and give weights for several categories. This differs from other articles where product

characteristics are considered a decision factor [25]. The six factors discussed are
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• Cost: the price of transportation, including loading and unloading.

• Time: the duration of transport, including loading and unloading.

• Loss and damage: the percentage of commercial value lost due to damage, theft

and accidents.

• Frequency: number of services per week offered by the shipping company or

forwarding agent.

• Reliability: percentage of the deliveries executed in time.

• Flexibility: percentage of unplanned shipments executed without excessive de-

lay.

[8] also present a stated preferences approach. They only consider within Europe

moves and model preferences with the UTA method of preference des-aggregation of

Jacquet-Lagreze and Siskos (1978,1982). 25 alternatives are presented to multiple

decision makers who state preferences for the alternatives. This allows inconsistency

to be modeled. They indeed build an additive utility or ”value” function of the six

factors from [109], and allow for sensitivity analysis through an additional constraint.

Relative weights of attributes are estimated for several product types including steel,

textile, electronic, chemical, cement, packing, Pharmaceutical, and building material

with different shipping modes (ie waterway, multimodal, road, rail).

A similar method to the idea presented in this research was developed in 2008

from a pair in Iran [76]. The authors define an AHP model for carrier selection, stat-

ing mode selection is irrelevant in this age. The AHP model is used in conjunction

with a network optimization problem, with the LP formulation assigning the most

goods to the highest valued carriers. In contrast to regular AHP, ratings rather than

alternatives are given values, thus eliminating the need for re-weighting when new al-

ternatives become available. The ratings fall under four subcategories defined through
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factor analysis in a previous study, not given. 28 important factors in transportation

carrier selection fall under 5 categories:

• Cost Considerations

• Insurance of Service Provision

• Customer Service

• Strategic Compatibility

• Handling Service.

Each of these are given a subjective rating with the exception of cost considera-

tions. The model then minimizes a simple inventory calculation and transportation

cost and maximizes value over the last four categories. The network model also guar-

antees a each node’s demand is satisfied, total capacity on the carriers doesn’t exceed

the maximum, and limits the number of carriers on each route. An inconsistency

rating is still calculated for the AHP model and satisfies Saaty’s rule of thumb of less

than .1, yet this still implies some inconsistency. VFT eliminates all inconsistency.

A case study is provided comparing transportation carriers in IRAN, the majority

being truck. A few water modes are explored, but multi-modal shifts are not exam-

ined. From their perspective on the literature, Figure 11 shows all factors considered

in carrier selection. There are some errors in this paper. Most notable is the use cal-

culation of the solution; it appears they failed to consider the average value through

the system. Their algorithm and solution simply take the longest path through the

network. This gives the highest value, but not the highest average value. A con-

sequence is the algorithm could choose a series of bad arcs to get the highest value

through the network. Our research is aiming to eliminate this by allowing the best

average through the network.
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Figure 11. Carrier Selection Factors from [76]

In their chapter on Intermodal Transportation [23], Crainic and Kim summarize

the transportation problem environment. They define intermodal transportation as

”the transportation of a person or a load from its origin to its destination by a

sequence of at least two transportation modes, the transfer from one mode to the

next being performed at an intermodal terminal.”

[10] models the intermodal transportation selection problem as a multiobjective

multimodal multicommodity flow problem (MMMFP) with time windows and con-

cave costs. He notes that ”It is important to include multiple objectives such as

minimization of travel time and of travel cost because shippers may have different

concerns.” We agree but argue there should be other considerations as well. He also

states ”Transportation mode schedules and delivery times must be included in the

modeling of routing. Otherwise some located routes might be infeasible in a real world
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situation. The existing schedules and demanded delivery times could be treated as

time window constraints.” However, the time window constraints are only imposed

on the air segments. Finally, transportation cost should take into account economies

of scale, more weight should be cheaper to ship per pound. The model formulated

is NP-hard, thus a heuristic approach is proposed. The problem is decomposed into

subproblems and solved in part by Lagrangian relaxation. The results of relaxing the

time window constraints and cost functions shows the results of the new methods are

significant.

2.5.1 Inventory Theoretic Approach.

While the articles above break down the transportation mode selection process

into some number of measures, the inventory theoretic approach combines several

factors into one equation. It accounts for the tradeoffs between cost, speed, reliabil-

ity, and carrying costs (freight damage) by calculating a total logistics costs. Baumol

and Vinod [6] originated the inventory theoretic approach in which they state ”Since

no pleasure is ordinarily derived from the means chosen for freight transportation,

the selection of a carrier is likely to be based on economic considerations that are

amenable to formal analysis.” A company isn’t concerned with measures as simple as

transportation cost, speed, and reliability, but rather fundamental economic consid-

erations are at play.

The Inventory Theoretic model variables are defined as follows:

A = order processing cost per order ($)

R = annual demand (lbs)

EOQ = Economic order quantity (lbs) = [
√

2∗A∗R
V ∗h1 ]

V = productvalue($)
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s = reorder point = k ∗ σX + µX

h1 = holding cost percentage for cycle and safety stock (% / $ /yr)

h2 = holding cost percentage for in-transit stock (% / $ /yr)

k = safety factor = norminv(PNS)

F = freight cost ($/lb) = (K1 ∗ ee1∗σL) ∗ (ee2∗µL)

µD = average daily demand = R
365

CovD = coefficient of demand variation

σD = standard deviation of demand = CovD ∗ µD

µX = mean demand during lead time = µD ∗ µL

σX = standard deviation of demand during lead time =
√
µ2
D ∗ σ2

L + µL ∗ σ2
D

µL = average lead time

σL = standard deviation of lead time

µ̂L = maximum lead time available

µ̌L = minimum lead time available

σ̂L = maximum standard deviation of lead time available

σ̌L = minimum standard deviation of lead time available.

The optimization problem thus becomes:

Minimize ETLC = [AR
Q

+ V h1(
Q
2

+ kσx) + µDµLV h2 + FR]

subject to µL ≤ µ̂L

µL ≥ µ̌L

σL ≤ σ̂L

σL ≥ σ̌L

The inventory theoretic approach is criticized because it ”does not address the

constraining nature and qualitative considerations of freight transportation choice
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[74].” If there existed a way to address these concerns however, this would be a much

better approach. The authors in [74] also discuss the trade-off model but a reference

isn’t given.

Inventory costs in general arise due to the following factors:

• Warehouse rent/mortgage and utilities

• Inventory taxes and insurance

• Opportunity cost of money

• Inventory damage and theft

• Warehouse labor expenses

2.6 Conclusions

Several areas of operations research were covered including decision analysis, net-

work optimization, computational complexity, inventory theory, and transportation

mode selection. The next chapters tie each of these together in a unique way. The

result is new theoretical contributions and unique applications.
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Abstract

The supply chain is filled with applications for multi-criteria decision making and

multi-objective decision analysis techniques. Value focused thinking (VFT) is one

such technique that seeks to identify important aspects of a decision and lead the

decision maker to the most valuable alternatives. This tutorial reveals the need

for VFT in various areas of the supply chain decision making process and clearly

guides the reader through the model-building process. The result is a methodology

and a powerful decision tool for easy implementation in supply chain problems such

as supplier selection, location selection, and carrier selection. An example of the

methodology is given on a supplier selection problem.

3.1 Introduction

Multi-objective decision analysis (MODA) and multi-criteria decision making (MCDM)

are very popular decision support tools in the logistics decision environment. Rarely

is a logistical decision based on a single objective, multiple objectives are always com-

peting with one another suggesting that quantitative and qualitative methodologies

should be utilized ([71]). Understanding this, many researchers have used the Ana-

lytic Hierarchy Process (AHP) to model logistic decisions such as: Supplier Selection

- [101], [45], [107]; Facility Location - [5], [14], [112]; Carrier Selection - [69]; . A

number of other multicriteria methods have been applied to supplier selection as well

[34], [92], and [63]. One method not used in the literature is Value Focused Thinking

(VFT) [61]. VFT has its roots in Decision Analysis, an Operations Research method-

ology, and although widely used and acclaimed as a suitable method for use in supply

52



chain decisions [30], VFT has yet to be applied to supplier selection, carrier selection,

or the facility location problem. This could be due to lack of familiarity with the

method and its many benefits among logistics practitioners. In this manuscript, we

seek to introduce VFT methodology, discuss VFT advantages and disadvantages, and

show its application on a supplier selection case study.

The area of supply chain management clearly presents a decision maker with

multiple competing objectives and alternatives making multiple objective decision

analysis an ideal tool for decision making. The literature however reveals a missing

link between value modeling and supply chain management. While several papers

utilize techniques of MCDM, including Analytic Hierarchy Process, risk models, etc,

papers using VFT are absent from the logistics literature stream. Of particular inter-

est to supply chain decision makers should be the values of their decisions, and VFT

provides this. The majority of analysis in decision making is done through a compar-

ison of alternatives. [61] calls this alternative-focused thinking. Decisions are made

based solely on the alternatives perceived to be available. Value-focused thinking is

different in that it seeks to solicit important aspects of a decision and then quantify

the alternatives based on this information. This allows the decision maker to obtain

the actual value of his/her decision as well as generate new alternatives that may

yield higher values.

Several differences exist between AHP and VFT although the two methodologies

are sometimes thought to be similar. In terms of time, AHP can be more time

consuming than VFT, in that pairwise comparisons for each of the measures and

alternatives are required, for n options this means n(n−1)
2

comparisons. In a small case

where 5 alternatives and 10 measures exist, this amounts to 10 and 45, respectively.

Additionally, each time new alternatives are introduced, new pairwise comparisons

are required and a new ranking occurs. Conversely in VFT, once a value hierarchy has
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been defined, ANY alternative can be valued. A one-time commitment by the decision

maker results in a reusable product for multiple future decisions. A single value

model allows the decision maker to value an essentially infinite number of possible

alternatives and understand the overall value each of those alternatives provides.

This is especially important in supplier selection where a company is selling multiple

products, a tool is needed to rapidly value multiple alternatives for multiple products

without the need to return to the decision maker each time new alternatives are

available.

VFT measures the true value of the decision while AHP makes the best decision

with the available alternatives. In certain applications, the best available decision

may not be a good choice. VFT reveals the value of each alterative, and shows the

inferiority of an alternative if it is a bad choice. Although VFT has been used in

a number of strategic decision application areas, it has yet to be used in logistics

applications. A Google scholar search of ”supplier selection” within Saaty’s [90]

ground breaking article in Management Science produces 435 hits, in [89] and [91],

53 and 88 respectively. AHP is used extensively in suppler selection. VFT however,

although comparable and even a stronger methodology in some areas, yields 11 hits

when ”supplier selection” is searched for within [61], none of which actually use the

methodology to model supplier selection. Similar results occurred with searches for

”facility location” and other logistics problems. Why the large discrepancy? They

are similar methodologies, both suited to handle the complexities of a multicriteria

decision problem, each with strengths and weaknesses based on the application. This

could be because VFT is being taught only at select schools, whereas AHP has a

much broader audience.

Although determined as a suitable OR-method for supplier selection in [30], VFT

has yet to be used in any part of the supplier selection decision process. It could be

54



that logisticians haven’t been introduced to the method; this is the purpose of this

tutorial.

3.2 Decision Analysis and Value Focused Thinking in Logistics

Here we review foundational Value Focused Thinking literature and show its im-

mediate applicability in the supply chain. The majority of the VFT methodology

throughout the paper is gathered from the most referenced textbook on the subject,

[61], as well as [65].

Decision analysis [16] is a powerful and widely used technique in Operations Re-

search ([52],[19]), but recently has been defined further [59] as ”a set of quantitative

methods for analyzing decisions based on the axioms of consistent choice. This ex-

cludes techniques such as AHP, fuzzy sets, MCDM, traditional math programming,

and other useful decision making techniques. Value-Focused Thinking and Decision

analysis seek instead to aid in human decision making, not model the human decision

making process. The justification for this purpose is decision makers should desire

to make rational choices given any situation. Sometimes it may be a poor choice

to model inconsistent or irrational behavior. A better approach if this is true is to

build models of rational choice and let the decision maker utilize the models in their

decision making process. Thus, removing the techniques above and their applications

in logistics leaves few true decision analysis studies in the logistics literature. Yet,

most would agree that all logistics decisions hold to the following axioms of consistent

choice from [65] where � means some consequence c is preferred:

1. (Transitivity) If ci � cj and cj � ck, then ci � ck

2. (Reduction) If the rules of probability can be used to show two alternatives have

the same probability for each ci, then the two alternatives are equally preferred.
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3. (Continuity) If ci � cj � ck, then a p exists such that an alternative with a

probability p of yielding ci and a probability of 1-p of yielding ck is equally

preferred to cj.

4. (Substitution) If two consequences are equally preferred, one can be substi-

tuted for the other in any decision without changing the preference ordering of

alternatives.

5. (Monotonicity) For two alternatives that each yield either ci or cj, where ci � cj,

the first alternative is preferred to the second if it has a higher probability of

yielding ci.

These axioms clearly hold for logistics decisions, it can be argued they hold for

any decision. If its agreed these the axioms of consistent choice hold for logistics

decisions, why is VFT not being used? AHP allows for inconsistency in its decisions,

we argue this should not be allowed in supplier selection or for any other strategic

logistics decision. Companies should care about making rational decisions.

Alternative focused thinking techniques, such as AHP, encourage a ”best” choice

among the available alternatives; value focused thinking begins with the fundamental

inputs in a decision and reveals what is truly valued. Rather than starting with

alternatives, VFT starts with objectives and measures. Alternatives can then be

generated from these measures and assigned values based on their fulfillment of the

objectives. In this way, ”value gaps” between a best available alternative and an

ideal alternative can be identified, providing a decision maker with a more complete

analysis of the problem at hand.

Other important benefits of VFT exist as well and are shown in Figure ?? from

[61], three of which are uncovering hidden objectives, creating alternatives, and im-

proving communication; these don’t commonly come to mind in most decision support

56



studies. The pervasiveness of multiple alternatives lures decision makers away from

thinking about fundamental objectives, and traps them in paradigmatic thought pro-

cesses. By improving communication through the VFT modeling process, new ideas

emerge, objectives are uncovered, and alternatives are generated.

Figure 12. FIGURE: VFT BENEFITS

As with any methodology, a list of suggested implementation procedures is useful.

[65] and [61] describe the steps in the VFT process rather generally, a more specific

declaration of events is given by [96] in Figure 13. This detailed process shows 10

essential steps in a value model study. Problem identification (Step 1) is self ex-

planatory, ie. supplier selection, transportation mode selection, facility location, etc.

Creating the value hierarchy (Step 2), developing measures (Step 3), creating value

function (Step 4), and weighting the hierarchy (Step 5) will be discussed in Sections

3.3 and 3.4. Following model construction is the generation (Step 6) and scoring (Step

7) of alternatives through deterministic analysis (Step 8). Because of the subjective-

ness in defining values and weights, a proper sensitivity analysis (Step 9) is essential

for a good analysis. Finally, conclusions and recommendations (Step 10) are to help

communicate the results to decision makers.
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Figure 13. Steps in VFT Study

3.3 Building the Model Framework

This section describes proper identification and structure of a decision’s objec-

tives and measures, this being the value hierarchy. Two approaches are possible

when building a hierarchy, bottom-up and top-down. When alternatives to a decision

problem are previously known, a bottom-up method is used to establish ways they are

different. The important ways in which alternatives differ end up being the measures

used to compare them. This ”bottom up” approach is called such because the value

hierarchy is built from the measures up to the objectives. Conversely, a top-down

approach begins with the fundamental objectives and works down to the measures.

Finally, properties and uses of a good value hierarchy are discussed.

58



3.3.1 Deciding on Measures and Objectives.

Determining good objectives is critical to the accuracy of the model. Initially, the

fundamental objectives of the problem must be identified. For instance, in supplier

selection, the overall objective of one organization may be to minimize costs while

another seeks to maximize customer satisfaction. These differing views on the pur-

pose of supplier selection may affect the weighting and value function discussed in

the next section. Always ask the decision maker why he feels that an objective is

important and what is trying to be accomplished through that objective. Doing this

ensures the decision maker thinks through the problem completely, and drills down

to the actual overall objective. Attainment of the fundamental objective is achieved

through further objectives called means objectives, while achievement of the means

objectives is gauged through measures. Measures themselves are generally quite easy

to generate; the difficulty comes in deciding which measures should be included in the

value hierarchy. Including every possible measure ensures completeness but increases

difficulty in weighting. Less measures are preferred given they adequately represent

the decision problem. When deciding what measures to include, use the ”test of

importance” [60], evaluations should only be included if for two given alternatives, a

change in the measure could change the preference between the two.

Types of measures are natural or constructed, and direct or proxy. Natural scales

need not be produced, that is they are ”naturally” occurring. Examples include

cost in dollars, container loads shipped, and time after due date. A constructed

scale on the other hand does not exist and must be developed for a measure if a

natural scale isn’t available or practical. Natural and constructed scales can be either

direct or proxy. Direct scales measure the direct attainment of an objective whereas

proxy scales measure the degree of attainment of an objective. Natural scales are

clearly objective in that a clairvoyant, able to see the future, will score an alternative
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identically, now and in the future, unless the levels of that measure change with time.

Constructed scales are different. There needs to be a test for clairvoyance when

setting levels on these scales, allowing subjectivity into the model introduces noise.

For instance, when rating a supplier, it’s best to clearly define the difference between

a high and medium score for a measure such as responsiveness. Simply allowing an

individual scorer to assign a value of high or medium based on personal preferences

creates a poor model, taking away from the advantages of using VFT.

Metrics or measures used for many logistical decisions can easily be gathered from

the logistics literature. The true objectives however, are not as easily defined. These

objectives can be obtained through specifying the reasons the measures are used to

compare alternatives. Why is each measure important? Is this measuring some level

of achievement of the objective? Once these questions are answered, the quality of

the hierarchy can be weighed against the proven properties of a good hierarchy.

A general hierarchy is provided in Figure 14 showing the breakdown of objec-

tives, measures, tiers and branches of the hierarchy, and the global and local weights

discussed in Section 3.4.2.

Figure 14. General Value Hierarchy
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3.3.2 Properties of a Good Value Hierarchy.

Keeney [61] defines the properties of a good value hierarchy as completeness, non-

redundancy, independence, operability, and small size. Completeness ensures that

every important objective and measure valued by the decision maker is accounted

for. A good hierarchy should have mutually exclusive or non-redundant measures;

large overlaps between measures are not preferred. This is inevitable in some cases

however. If measures must overlap, its important the decision maker is aware of

the implications on the model, this being the combined weights of the measures

in the overall decision. In addition to non-redundancy and completeness, a value

hierarchy should be operable or understandable by all interested parties and small

in design. Another property is small size. These may seem non-intuitive as people

normally enjoy building complex models, even though model sparsity usually results

in a better solution. Smaller hierarchies are easier to communicate and usually have

enough information to make good decisions. The art of value modeling lies in the

ability to balance the defensibility and practicality of a model. The final property,

independence, is covered in Section 3.4.5.

3.3.3 Using the Value Hierarchy.

The primary use of a value hierarchy is to evaluate alternatives, assigning each al-

ternative some value based on the objectives and measures being defined, and taking

into consideration the weight each objective contributes to the overall decision. In

addition to assigning values to alternatives, value hierarchies can actually help gener-

ate alternatives. This makes it easy to identify value gaps, or differences between the

best available alternative and the best possible alternative in a perfect world. Finally,

the value hierarchy helps to facilitate communications between decision makers and

initiate data collection. Gathering each of the interested parties into a room for a
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discussion of objectives is unquestionably beneficial and certainly data will result.

To carry out the former two uses, evaluating and generating alternatives, values and

levels need to be assigned to the measures and weights to the measures/objectives,

this being the topic of the next section.

3.4 The Additive Value Model

Development of a good value hierarchy is followed by assigning values to the

measure scale and weighting the objectives and measures. Several assumptions are

necessary to use an additive value model, these are discussed in this section. If these

assumptions are not realistic, other models such as multiplicative models are viable

as well [60].

3.4.1 Assigning Values to Measures.

Eliciting values from a decision maker can be complicated. Single dimension

value functions (SDVF) are normally used to capture preferences for varying levels

of the measures, assigning each level of the function a value between 0 to 1 . These

functions can be monotonically increasing or decreasing. For instance, performance is

a monotonically increasing function because higher values are more desirable, whereas

cost is monotonically decreasing, because higher levels are less desirable. This section

covers two popular SDVF’s [65], piecewise linear and exponential. For an in depth

look at values and preference functions see Keeney and Raiffa [60]. Initially, the

modeler needs to find the high and low values of a measure, high being the most

preferred level and low the least preferred. For instance, in supplier selection, say a

defective product rate of say 1% is desired. Anything above 1% is unacceptable, and

thus will have no value, but anything less than say .5% is superfluous and achieves

all the desired value possible for that measure. The high level that achieves all value
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is assigned a 1 and the low level a 0. All other values are derived from these high and

low levels. If a defective product rate of .75% achieves half the value for a measure, a

linear monotonically decreasing function is fit from 0 to 1 on the y axis with an x axis

of 1% and .5%, respectively. However, this is not always the case. If .75% achieved

a quarter of the value for a measure, a non-linear monotonically decreasing function

must be used. Continuous measures are captured by either the piecewise linear or

exponential functions, preferable the exponential, depending on the preferences of the

decision makers. For cases where measures are not continuous, or preferences do not

match the exponential function, [65] suggests using the piecewise linear SDVF.

3.4.1.1 Piecewise Linear Single Dimension Value Functions.

When measure levels are discrete, a piecewise linear SDVF is best. Values are

assigned to different levels of the measure. In a supplier selection, it may be that a

cost of $20 per widget has a value of .75, while $25 has a value of .25 and $22 is valued

at .7. This is easily captured through a piecewise linear SDVF. As another example,

take a qualitative rating of supplier responsiveness between 1 and 5. Each of these 5

levels are assigned a value, 1 receiving a 0 and 5 a 1. See Figure 16 for an example

with of 5 levels and values. Setting the scales up is simple as well using three steps:

1. Place each value increment in order - smallest to largest value increment

2. Scale each value increment as a multiple of the smallest value increment (eg.

2:1 or 10:1 or 4:1)

3. Sum the value increments to one and solve for the smallest value increment

For an example application, see the supplier selection example in Section 3.5.
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Figure 15. Exponential Value Function
Figure 16. Piecewise Linear Value Function

3.4.1.2 Exponential Single Dimension Value Functions.

Many of the measures we encounter are continuous in nature. The exponential

SDVF is equipped to handle preferences on a continuous scale and is easy to explain

to a decision maker. Initially, as with the piecewise linear SDVF, high and low levels

need definition. For monotonically increasing measures, the continuous exponential

function is

vi(xi) =


1−e−(xi−xL)/ρ

1−e−(xH−xL)/ρ ρ 6= Infinity;

xi−xL
xH−xL

, otherwise.
(11)

where xH is the most preferred level (assigned a value of 1), xL is the least preferred

level (assigned a value of 0), xi is the level of the ith measure, ρ is an unknown

parameter, and vi(xi) is the value of the ith measure at level xi.With this equation, any

continuous measure is valued, however the equation must be solved for the unknown

parameter ρ. Unfortunately, no closed form solution exists. In practice, ρ can be

estimated if the decision maker can assign a value to a mid-level between xH and

xL. Take a measure such as defects per million parts and let xL=500 and xH=1500,

having values 0 and 1 respectively. A mid level of 1000 may have a value of .7, or .3

say. Using .7, one method is to plug all numbers into Equation 11,
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.7 =
1− e−(1000−500)/ρ

1− e−(1500−500)/ρ

and solve using Excel Solver for ρ, which turns out to be 590 (note:seems a little

high). With a solution for ρ, any level of measure xi can be valued. Figure 15 shows

the shape of the exponential value function for differing levels of ρ. If the user is not

familiar with Excel, an alternative method to find ρ exists, see p. 68 in [65]. Next,

weights must be assigned to each of the measures.

3.4.2 Determining Weights.

There are several means to determining weights, AHP, swing weights, direct as-

sessment, or group weights to name a few. Note, AHP can be used to determine

weights for a value hierarchy but this differs from using it to evaluate alternatives.

An actual AHP model requires the decision maker to make pairwise comparisons

across all combinations of the possible alternatives, whereas VFT provides a value

for each of any large number of alternatives. The AHP technique in this case is used

only for weights. Measures can weighted globally or locally; the former compares all

measures simultaneously, the latter looks at each measure in the context of its means

objectives. Local weighting is preferred as it tends to be easier for decision makers

to weight measures within objectives rather than across all objectives. In turn, this

provides more accurate weights, and global weights are easily calculated from local

weights. Either way, the global weights are needed to calculate the overall value

function. wi is the notation used for the weight of measure i.

An easy method to implement for determining weights is direct assessment. This is

accomplished through examining the measures from one means objective and weighing

tradeoffs between them. see hierarchy in (generic hierarchy). The least important

measure is assigned a 1, the remainder of the measures are assigned numbers based
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on how much more important they are than the least important measure. A measure

that is twice as important as the least important measure is given a value of 2, call

it ri for measure i, and so on. Since the weights must sum to one, that is
∑
wi = 1,

these values must be scaled to a decimal between 0 and 1. To determine a weight wi

for measure i, take its successive ri and divide by the sum of all the ranks, that is

wi =
ri∑
ri
. (12)

This works well for most cases, if consensus isn’t reached, a more robust method

should be used, either swing weights or AHP.

3.4.2.1 Swing Weights Method.

Here we show the standard swing weights method for determining decision maker

weights. Advanced swing weight methods have been developed as well but are not

covered here, see for instance Parnell’s method [83] which uses a matrix like that

in Figure 18. The standard method begins by building a table like that in Figure

17, where each of the measures 1 through n are set at high to create a list of n

hypothetical alternatives. Where one measure is set to high, the rest of the measures

are set to their lowest level. Next, each of these alternatives are ranked from 1 to n,

with 1 representing the best alternative and n the worst case.

Following the ranking assignments, each measure is assigned a rate. The baseline,

or worst alternative, is assigned a rate of 0 and the highest ranking measure is assigned

a weight of 100. The decision maker is then asking the following questions: how much

less satisfaction do you get from swinging a lower ranked measure versus swinging the

highest ranked measure? If swinging the top ranked measure from low to high gives

100% satisfaction, what percentage satisfaction do you get from swinging the lower

ranked measure?. After assignment of all rates, the weight is calculated as a ratio of
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Ratei∑n
i=1Ratei

. (13)

Figure 17. Swing Weights Standard

Method
Figure 18. Swing Weights Matrix Method

The AHP method of determining weights is not covered here, as applications are

plentiful for logistics. Application is similar to the methods used in a popular AHP

supplier selection application [45], however the AHP is NOT used to rank alternatives.

For an extensive list of application papers see [50]. With weights and values for each

of the measures defined, we can calculate the overall value of each of the alternatives.

3.4.3 Mathematical Formulation of the Model and Scoring.

The value of an alternative is given by inserting levels of the weights wi and the

values of the levels of each measure xi, or vi(xi). Doing this for each alternative

creates the additive value model:

vj(x) =
∑

wivi(xij) (14)

for i = 1, 2, ..., n measures and j = 1, 2, ...,m alternatives, where vi(xij) is the

single dimension value function of measure i for alternative j, wi is the weight of
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measure i, and vj(x) is the multiobjective value for alternative j.

After inserting all inputs into the equation above, or performing Deterministic

Analysis as referred to in Figure 13, an overall score is obtained for each alternative

being compared. The meaning of the final score is straightforward, it’s the amount

of value the alternative provides as a solution to the problem. If the final value is say

.674, the alternative provides 67.4% of the total possible value that could be achieved

when making this decision, implying a ”value gap” of 32.6% exists between the perfect

alternative and the current alternative. Since most of the process to create this value

is subjective, the analysis is not complete.

3.4.4 Sensitivity Analysis.

Because of the subjectivity of the VFT modeling process, a requisite sensitivity

analysis is needed to reveal the effects of changes in value functions and weighting

schemes, primarily weighting schemes as these produce greater changes. The idea is

to vary the weights wi of Equation 14 for each evaluation measure and determine

at what point changes in the most valued alternative occur. Several techniques are

currently used for sensitivity analysis including math programming [79], algorithms

[11], and simulation [4], [55], [73]. Historically, sensitivity analysis has been limited to

one-way analysis, changing only one weight at a time [15]. However, new techniques

are emerging (TRIAGE Method, COSA method, VBR Method) that advance the

ability to conduct sensitivity analysis.

Sensitivity analysis is generally performed through manipulation of the weights

one at a time (COSA). Results of such manipulations are best viewed on a ”break

even” chart. The purpose of the chart is to visualize the effects of changes in the weight

of a measure on the preferred alternative. For instance, changing a weight from .3 to

.35 could affect which alternative is valued highest, and thus have an effect on the
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overall solution. Some view this as a weakness of VFT, however a befitting sensitivity

analysis alleviates such concerns. An illustrative example is given in Section 3.5.

3.4.5 Assumptions in using an Additive Value Model.

Use of an additive value model requires the satisfaction of several mathematical as-

sumptions. If the assumptions fail, other models such as multiplicative or multilinear

models may be used. We only discuss 3 of the important mathematical requirements

of the additive value model in this section, more info can be found in [65].

Definition 4 A function v(x) is a value function if v(x′) > v(x′′) if and only if

x′ � x′′, where x′ and x′′ are specified but arbitrary levels of x.

In order to use this additive value model, measures must be preferentially indepen-

dent. We first discuss the corresponding tradeoffs condition that must hold when deal-

ing with two measures. Two measures X and Y hold to the corresponding tradeoffs

condition if: for any levels x1, x2, y1, and y2 of the measures, if (x1, y1) ∼ (x1−a, y1+b)

and (x2, y1) ∼ (x2− d, y1 + b), then for c such that (x1, y2) ∼ (x1− a, y2 + c) it is true

that (x2, y2) ∼ (x2 − d, y2 + c). This condition must hold for any x1, x2, y1, and y2.

Thankfully, for 3 or more measures, this need not be shown, only mutual preferential

independence is needed.

Definition 5 Preferential independence: Suppose that Y and Z are a partition

of X1, X2, ..., Xn, each Xi being in exactly one of Y or Z. Then Y is preferentially

independent of Z is the rank ordering of alternatives that have common levels for all

attributes in Z does not depend on these common levels. (The common levels do not

have to be the same for different attributes, but the level of each Xi in Z is the same

for all alternatives.)

Given this, we can now define mutual preferential independence.
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Definition 6 Mutual Preferential independence: A set of attributes X1, X2, ..., Xn

displays mutual preferential independence if Y is preferentially independent of Z for

every partition Y, Z of X1, X2, ..., Xn.

For proofs, see [65].

3.5 Supply Chain Application Example

Here we apply the methodology presented in Sections 3.3 and 3.4 to a common

logistics problem, supplier selection. A decision maker can rapidly apply value focused

thinking to any logistics problem, this section gives a practical example. The following

problem is adapted from a case study [80]. A bottom-up approach to building the

hierarchy is taken as the measures have already been defined.

3.5.1 Measures and Objectives.

Measures for the majority of well studied supply chain decision problems are likely

defined in the literature already. There may be some variation due to a company/de-

cision maker’s fundamental objectives for operating the business, but for the most

part these problems are well studied. Measures from the case study [80] are given in

Figure 19, these are consistent with the literature [45], [101], [92]. Using a bottom up

approach, we assume the fundamental objective of the decision maker, shown in the

1st and 2nd tier, is to maximize profit and customer satisfaction by choosing the best

supplier. Certain decision makers may be prone to valuing profit more than customer

satisfaction and vice versa. In this case, the hierarchy can be restructured to reflect

these personal objectives, which likely affects the weights of the measures. Another

option is to build every possible objective and measure into the hierarchy and weight

the measures and objectives with small or no effects a zero. Alternatively, if a top

down approach is used, the decision maker determines fundamental objectives, the
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means objectives to achieve these, and finally the measures important to measuring

achievement of the objectives. If a general framework for a problem is desired, its

best to include all measures a decision maker may consider.

Means objectives, given in the 2nd and 3rd tier, achieve the fundamental objec-

tives (1st tier) and are needed to establish the measures in Figure 19, the 4th tier.

These measures are used to assess the realization of the means objectives. Each mea-

sure from the figure is calculated using data from the case study [80]; for data and

formulas see Appendix B. Also, let the measures be numbered from left to right, so i

= 1 = Cost, i = 2 = Quality, and so on.

Figure 19. Supplier Selection Hierarchy

Single dimension value functions must next be assigned to each of the measures

in Figure 19.

3.5.2 Assigning Values to Measures.

Assigning values to the measures, as shown in Section 3.4.1, is relatively straight-

forward. Here we show an application of the piecewise linear single dimensional value

function on quality rating and the exponential single dimensional value function on
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delivery rating. Applying the piecewise linear SDVF to the quality rating from Figure

19 is simple, the x axis is already defined. Simple elicitation from the decision maker

can be used to assign values, the notional values for different levels of quality rating

are shown in Figure 20. Alternative E from Appendix B has a quality rating of 1423

meaning v2(x25) = .62. For calculations of quality rating, delivery rating and the

other measures, see Appendix B.

Figure 20. Quality Rating Piecewise Linear

Single Dimensional Value Function

Figure 21. Delivery Rating (% on time) Ex-

ponential Single Dimensional Value Func-

tion

Values for delivery rating can be captured on a continuous scale so the exponential

function is used.

3.5.3 Determining Weights.

Local weights for each of the measures are given in Figure 19, global weights are

in parenthesis. The notional weights for the means objectives in Tier 3 are taken

from a popular AHP article [45] and adapted slightly to fit the case study hierarchy.

From here, local weighting using direct assessment is used to weight the measures in

Tier 4. Since AHP has been used on several logistics problems, the weights in most
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cases can be determined through direct assessment. If for some reason weights are not

available, or the decision maker believes the weights gathered by direct assessment

aren’t representative, weights could be determined using AHP or swing weights.

What if weights for the means objectives in Tier 3 are not readily available from

the literature or the corporation feels differently than the general consensus? Using

direct assessment, let’s assume the least important objective is maximizing customer

service, and the objectives are numbered left to right, making r4 = 1. If maximizing

delivery reliability is 10% more important than maximizing customer service, r3 =

1.1. Similarly, if maximizing product quality and minimizing cost are 2 and 4 times

more important than maximizing customer service, r2 = 2 and r1 = 4. Thus from

Equation 12,

w1 =
r1∑
ri

=
4

8.1
= .49,

w2 =
r2∑
ri

=
2

8.1
= .25,

w3 =
r3∑
ri

=
1.1

8.1
= .14,

and

w4 =
r4∑
ri

=
1

8.1
= .12.

Note: these weights were only used for purposes of demonstrating direct assessment

and for the remainder of the paper, wi refers to the ith measure, not means objective.

Alternatively, the methods in Section 3.4.2.1 may be used if direct assessment in

unsuccessful.

3.5.4 Mathematical Formulation of the Model.

Here we show an example calculation of the value of one measure, quality rating,

for one alternative, E. We know v2(x25)=.62 and w2=.22 for measure 2 and alternative
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5(E). The value added to alternative 5 by quality rating is thus

wivi(xij) = w2v2(x25) = .22 ∗ .62 = .1364.

Doing this for each measure for alternative 5 gives

v5(x) =
∑

wivi(xi5) = .669

for i = 1, ..., 8, see Figure 22 for overall values.

3.5.5 Alternative Comparison and Sensitivity Analysis.

After calculating vj(x) for each of the j = 1, ..., 5 alternatives in Appendix B,

we compare differences in values in Figure 22. The amount of value each measure

contributes to the overall value is color coded. For example, alternative D, the lowest

valued alternative, receives the majority of its value from cost but no value from

quality. For alternative B, on the other hand, quality contributes more to the overall

value than does cost, even though quality is weighted 1/3 the importance of cost.

Alternative E is the top valued alternative for the specified weights wi and values

vi(xi) . Since these values and weights are again subjective, the effects of varying

them should be explored through sensitivity analysis.
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Figure 22. Analysis of Alternatives

Sensitivity analysis can be accomplished in many ways, the global proportional

method is used here to view the impacts of varying the global weights of cost and

quality rating on the preferred alternative. This method varies the global weights

between 0 and 1. From Figure 23, a change in the weight of cost from .63 to anything

≤.45 changes the preferred alternative from E to B. To put this in practical terms, if

a decision maker is somewhat uncertain of the weight of cost, he should consider both

alternatives E and B when making a final decision. For quality rating, if the decision

maker agrees the weight is .20≤ wi ≤1, both alternatives E and B should be examined.
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Figure 23. Sensitivity of Cost Weight on

Preferred Alternative

Figure 24. Sensitivity of Quality Weight on

Preferred Alternative

In addition to the weights, sensitivity analysis can also be performed on the value

functions. A change in the mid-value of the cost value function changes the ρ param-

eter for the Exponential SDVF. The effects of manipulating ρ between 1 and 50 for

the cost SDVF are given in Figures 25 and 26. In general, if cost is valued higher,

more value is achieved shown by the values on the left of each graph. Changes in

the value of cost also results in more value coming from quality, resulting in those

alternatives with better quality to rank higher. A decision maker can continue to

easily weigh tradeoffs between competing measures through the use of these methods

and view the consequences of each of the decisions made for weights and values of

the hierarchy. This isn’t possible or convenient with other methods of modeling such

as AHP.
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Figure 25. Preferred Alternatives using

Cost Value Function with ρ = 1

Figure 26. Preferred Alternatives using

Cost Value Function with ρ = 50

Although prescriptive solutions are provided by the additive value model, we rec-

ommend using the analysis as a guide to make a better decision. If after applying

sensitivity analysis, certain alternatives consistently rank near the bottom, dismiss

them and refocus energy to making a decision among the remaining strong alter-

natives. This also can result in a portfolio of carriers, where the highest ranking

alternatives receive some part of the overall business.

3.6 Managerial Implications and Discussion of the Consequences of ap-

plying the proposed ideas

Applying the proposed methodology is simple and profitable for those making

decisions about logistics. Although similar methods have been proposed in the past,

value-focused thinking adds several perks not available with other methods. Decision

makers can quickly rank order potential suppliers, or alternatives for any problem,

without the need to re-score each time a new supplier/alternative becomes avail-

able. This strength alone leads us to conclude that VFT may be a more practical
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methodology than AHP for logistics problems. An initial commitment to build a

VFT hierarchy saves the time and energy to formulate AHP models. Secondly, the

proposed methodology is much easier to implement than AHP. Complicated eigenval-

ues and eigenvectors are unnecessary with VFT, the only requirement in a knowledge

of basic algebra and a decision maker. Third, VFT allows post-analysis techniques

such as sensitivity analysis without the need to re-score and re-weight alternatives.

Lastly, approaching the problem from a value-focused thinking mentality forces the

decision maker to think about what is truly valued in the decision. When making a

decision among a list of provided alternatives (perhaps from a consulting firm), if no

alternatives provide adequate value to the decision, the decision maker can request

more alternatives and quickly value them again.

The methodology is easily applied using a spreadsheet and the techniques in this

paper, and can easily be coded into Microsoft Excel. Keep in mind that as with any

methodology, ignoring parts of the recommended procedure results in poor models,

common mistakes in value modeling are found in [62]. For a copy of a Visual Ba-

sic coded hierarchy builder that makes the analysis easy, contact the corresponding

author.

3.7 Conclusions

The purpose of the VFT process is to help decision makers make better decisions.

Through completion of the process, a decision maker will truly understand what he

values in his decision, and consequently will make a better decision even if he chooses

not to use the model prescriptively. The VFT process helps the decision maker under-

stand the strategic problem he is facing and assists in viewing the effects of making

tradeoffs among competing objectives. Rather than simply comparing available alter-

natives, VFT unveils what value an alternative truly has to the decision maker. This
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allows the decision maker to seek out better alternatives if the available alternatives

are not achieving what is valued in the decision. This is especially important in the

supply chain where boundless alternatives exist. In supplier selection, numerous sup-

pliers can be easily valued, providing the decision maker with a defendable solution

for a list of preferred suppliers through the use of this powerful tool, and quickly

valuing any alternative without the need to re-weight each time more are available.

Value-focused thinking is applied successfully in countless areas in the literature, the

time for logistics is now.
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Appendix A

Table 9. Calculating the Exponential Constant

z0.5 R z0.5 R z0.5 R z0.5 R

0 - 0.25 0.41 0.5 Inf 0.75 -0.41

0.01 0.01 0.26 0.44 0.51 -12.5 0.76 -0.39

0.02 0.03 0.27 0.46 0.52 -6.24 0.77 -0.36

0.03 0.04 0.28 0.49 0.53 -4.16 0.78 -0.34

0.04 0.06 0.29 0.52 0.54 -3.11 0.79 -0.32

0.05 0.07 0.3 0.56 0.55 -2.48 0.8 -0.3

0.06 0.09 0.31 0.59 0.56 -2.06 0.81 -0.29

0.07 0.1 0.32 0.63 0.57 -1.76 0.82 -0.27

0.08 0.12 0.33 0.68 0.58 -1.54 0.83 -0.25

0.09 0.13 0.34 0.73 0.59 -1.36 0.84 -0.24

0.1 0.14 0.35 0.78 0.6 -1.22 0.85 -0.22

0.11 0.16 0.36 0.85 0.61 -1.1 0.86 -0.2

0.12 0.17 0.37 0.92 0.62 -1 0.87 -0.19

0.13 0.19 0.38 1 0.63 -0.92 0.88 -0.17

0.14 0.2 0.39 1.1 0.64 -0.85 0.89 -0.16

0.15 0.22 0.4 1.22 0.65 -0.78 0.9 -0.14

0.16 0.24 0.41 1.36 0.66 -0.73 0.91 -0.13

0.17 0.25 0.42 1.54 0.67 -0.68 0.92 -0.12

0.18 0.27 0.43 1.76 0.68 -0.63 0.93 -0.1

0.19 0.29 0.44 2.06 0.69 -0.59 0.94 -0.09

0.2 0.3 0.45 2.48 0.7 -0.56 0.95 -0.07

0.21 0.32 0.46 3.11 0.71 -0.52 0.96 -0.06

0.22 0.34 0.47 4.16 0.72 -0.49 0.97 -0.04

0.23 0.36 0.48 6.24 0.73 -0.46 0.98 -0.03

0.24 0.39 0.49 12.5 0.74 -0.44 0.99 -0.01
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Appendix B

Table 10. Supplier Selection Data

Measures
Supplier

A B C D E

Cost $247.46 $249.15 $248.28 $247.04 $246.90

Rejects 33 19 40 83 23

Supplied Products 23,169 26,492 28,284 28,832 16,156

Early Deliveries 1 1 0 1 1

Late Deliveries 1 0 3 7 2

Over/Short Deliveries 2 1 3 6 1

Total Deliveries 23 26 28 28 16

Initiative 3 4 5 2 3

Attitude 3 5 4 1 3

Responsiveness 3 4 4 2 1

Attention to detail 5 4 2 3 2

Communication performance 3 4 3 2 3

Defective PPM = Rejects
SuppliedProduct

x 1,000,000

Total Delivery Defects = Early Deliveries + Late Deliveries + Over Deliveries

% on time = TotalDeliveries−TotalDeliveryDefects
TotalDeliveries

x 100

Note: The defective PPM is used for the quality rating in Figure 19.
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Abstract

We integrate multiobjective decision methods, such as the analytic hierarchy process

or value focused thinking, with the shortest/longest path problem for directed graphs.

Since a decision maker desires to maximize value with these techniques, this creates

the Multiobjective Average Longest Path (MALP) problem. The MALP allows mul-

tiple quantitative and qualitative factors to be captured in a network environment

without the use of multicriteria methods, which typically only capture 2-3 factors

before becoming intractable. The MALP (equivalent to average longest path) and

the average shortest path problem for general graphs are NP-hard, proofs are pro-

vided. The MALP for directed acyclic graphs can be solved quickly using an existing

algorithm or a dynamic programming approach. The existing algorithm is reviewed

and a new algorithm using DP is presented. We also create a faster heuristic allowing

solutions in O(m) as opposed to the O(nm) and O(n3) solution times of the optimal

methods. This scaling heuristic is empirically investigated under a variety of con-

ditions and is easily modified to approximate the longest or shortest average path

problem for directed acyclic graphs. Finally, the steps used by the existing algorithm

and dynamic programming approach automatically generate an efficient frontier for a

special case of the bicriteria average shortest path problem involving arcs and value.

The efficient frontier allows a decision maker to make tradeoffs between increasing

value in the network and decreasing the number of arcs used in the chosen path.

We provide the problem formulation and solution. The methods are discussed in the

context of a transportation mode selection decision.

83



Keywords

network flows, decision analysis, heuristics, multiple objective programming

4.1 Introduction

Multiobjective techniques such as the analytic hierarchy process [89] and value

focused thinking [61],[60] are widely used decision making techniques [38], [104]. In-

tegrating these with other mathematical methods is also important [50], [103]. In this

paper, we combine these multiobjective methods with network optimization, specifi-

cally the shortest path problem for directed acyclic graphs. The shortest path problem

is thus transformed into a highest or longest average path problem in order to maxi-

mize value within the network setting, allowing multiple qualitative and quantitative

factors to be captured without the use of multicriteria optimization. Normal shortest

path algorithms cannot solve the average shortest or longest path problem. Since we

are dealing with a non-linear cost function, using any normal shortest path algorithm

will only produce a longest or shortest path. One way to solve this problem is through

the use of non-additive shortest path algorithms. The idea of non-additive paths is a

relatively recent development in the network optimization literature. Research moti-

vation comes from the fact that not all network paths are additive in nature, that is a

path cost may be some function other than simply the addition of all the arcs costs.

The methods were sparked by the traffic equilibrium problem and are discussed in

[40] and [41]. These algorithms give a solution for the general non-additive shortest

path problem but are complicated slow heuristics. The average path is actually just a

special case of the non-additive shortest path where the function is simply the sum of

arc costs of the path divided by the number of arcs. Because of its simple structure,

faster solutions are attainable. This paper describes the methodology in terms of

VFT, however AHP could be substituted without complication; the value function is
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just replaced with the AHP function. The general additive value model is given by

vj(x) =
∑

wivi(xij) (15)

for i = 1, 2, ..., n measures and j = 1, 2, ...,m alternatives, where vi(xij) is the single

dimension value function of measure i for alternative j, wi is the weight of measure i,

and vj(x) is the multiobjective value for alternative j. Value-focused thinking seeks

to solicit the important factors in a decision and quantify the alternatives based on

this information. This allows the decision maker to obtain an actual value of their

decision as well as generate new alternatives.

The MALP replaces the normal cost function in a shortest path problem with an

AHP or VFT function as in Equation 15. The result is a shortest path problem with

a nonlinear cost function. Recall the shortest path problem. Assume a graph G =

(V,E) to be a directed acyclic network with n ∈ V vertices and m ∈ E arcs. Each arc

(i, j) ∈ E has some cost ci,j and flow xi,j associated with its use. The source and sink

vertices are designated s and t, respectively. The linear programming formulation of

the general shortest path problem is:

min z =
∑

(i,j)∈E

ci,jxi,j

s.t.
∑

(i,j)∈E

xi,j −
∑

(j,i)∈E

xi,j =


1, if i=s;

−1, if i=t;

0, otherwise.

xi,j ≥ 0 ∀ (i, j) ∈ E

(16)
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where xi,j is the flow from vertex i to j and ci,j is the cost of a unit of flow from i to

j. This is easily solved using the simplex method or any other LP algorithm. How-

ever, since it maintains a unique structure, faster algorithms are available. Dijkstra’s

algorithm [3] is the most common shortest path algorithm and solves any shortest

path problem in O(n2). However, since we are concerned with directed acyclic graphs

only, even faster algorithms exist. A dynamic programming algorithm that solves the

DAG in linear time O(m) is called the Reaching Method. It begins with a topological

sort of the nodes and labels each vertex successively.

Step 1: Topologically order the DAG G

Step 2: For i = 1, ..., n, set dist(i)=0

Step 3: For i = 1, ..., n− 1, for each edge V (i), u outgoing from V (i), if dist(Vi) +

G(Vi, u) > dist(u), then set dist(u) = dist(Vi) + G(Vi, u)

Step 4: dist(n) is the longest path to n

The algorithm above is easily modified to gather the shortest path to every node as

well. This is the underlying dynamic programming approach behind the proposed

scaling heuristic.

This problem is important for many reasons and useful in a variety of applications.

Some examples include transportation mode selection, driving directions, and finance.

In each of these, a decision maker may desire to incorporate more than 1 or 2 factors

into his decision. For instance, in transportation mode selection, a DM may desire

to consider cost, speed, and reliability in choosing the best carrier to ship goods.

Perhaps a driver is not interested simply in time, but also weather, road conditions,

scenery, and traffic conditions. Each investor may esteem different financial variables

when allocating his resources. Analytic Hierarchy applications abound as well [103,
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104]. Many of these applications could be modeled using shortest paths with multiple

factors.

4.2 Formulations and Complexity

Here we formulate the multiobjective average shortest path problem and present a

multicriteria optimization problem of the multiobjective average shortest path prob-

lem.

4.2.1 Multiobjective Average Longest Path Problem.

Combining the shortest path problem with the additive value model results in a

unique formulation. Simply substituting the ci,j in Formulation 16 with the vj(x)

in Equation 15 ignores the fact that we are seeking to find the best average value

through the network. Such a substitution simply results in a longest path rather

than a highest average. Substituting the AHP or VFT function and dividing by the

number of arcs in the solution gives a non-linear formulation of the multiobjective

average longest path (MALP):

max z =

∑
(i,j)∈E

(
l∑

k=1

wkvi,j,k

)
xi,j∑

xi,j

s.t.
∑

(i,j)∈E

xi,j −
∑

(j,i)∈E

xj,i =


1, if i=s;

−1, if i=t;

0, otherwise.

xi,j ≥ 0 ∀ i, j ∈ E

(17)

where wk is the weight of measure k, vi,j,k is the value function at measure k between
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nodes i and j, xi,j is the flow from vertex i to j, and
l∑

k=1

wk = 1. The ci,j from the

shortest path problem in Formulation 16 is replaced with the the value function in

Equation 15. This sum is divided by the sum of xi,j’s; this remains integer because

the constraint matrix is unimodular.

4.2.1.1 NP-hardness.

Theorem 1 The average longest path problem is strongly NP-Complete.

Proof 1 Reduce from the longest path problem which is strongly NP-complete (Garey

and Johnson 1979). The problem is:

INSTANCE: Given a graph G = (V,E), edges e ∈ E with some cost ci,j, positive

integer K, and specified vertices s, t ∈ V .

QUESTION: Is there a simple path in G from s to t of length K or higher.

Assume we are given an instance of the longest path problem with n nodes such that

every node i possesses a directed arc to the next node i+1 for i = 1, 2, ..., n−1 and all

these edges e ∈ E have cost ci,j = u. Also assume no cycles are present and all other

edges e∗ ∈ E have cost ci,j < u. Let K = u(n − 1) and u ∈ Z+. To reduce from the

longest path problem, construct the same instance but solve using the average longest

path. A constructed example instance for n = 4, K = 6, and ci,j = 2 is given in

Figure 27.

Clearly, the answer to the longest path problem is yes if and only if the objective

function value of the average longest path problem is u(n−1)
n−1 = u. This can be easily

seen from the figure; the longest path through the network is 6 while the average

longest path is 2. Solving the longest path problem in the constructed instance will
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always yield a value of u(n − 1) and solving the average longest path problem will

always give u. Moreover, if we let a cycle Φ be positive such that the costs of e ∈ Φ

are greater than the costs of e not in Φ, the longest path and the longest average path

include Φ and the solution is therefore unbounded. The average longest path problem

is therefore strongly NP-complete.

Figure 27. Constructed Instance of the Average Longest Path Problem

If G is a directed acyclic graph, the longest path problem can be solved in polyno-

mial time [68]. In the next sections, we show the same is true for the average longest

and shortest path problem for directed acyclic graphs.

Theorem 2 The average shortest path problem is strongly NP-hard.

Proof 2 The proof is similar to Theorem 1 except we convert to the shortest path

problem, another known NP-hard problem for general graphs [42]. The only difference

in Figure 27 is the graph is negated. The answer to the longest path problem is yes

if and only if the average longest path is −u. If the value of the average longest path

problem is −u, the longest path problem must have a value of −u(n− 1). Hence, the

average shortest path problem for is strongly NP-hard.

For shortest average paths in directed acyclic graphs, a polynomial algorithm

exists [108]. The longest average path for dag’s is similarly solved. In Section 4.3,
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we introduce a faster polynomial algorithm and linear heuristic that can be used for

longest or shortest average paths in directed acyclic graphs.

4.2.2 A Special Case of the Bicriteria Average Shortest Path Problem.

The multicriteria optimization version of the multiobjective average shortest path

problem in this section allows a decision maker to make tradeoffs between increasing

value in the network and decreasing arcs utilized in the chosen path. Average shortest

path algorithms and heuristics may take lengthy paths (in terms of arcs) in order to

increase the overall average. However, in some applications such as transportation

mode selection, taking long paths may cause unseen problems. Increased handling

normally results in increased costs, increased damage/loss, and increased chance of

mistakes. The multicriteria optimization for the MALP allows the decision maker to

tradeoff value with additional arcs in the network path by generating all pareto op-

timal solutions. Because multiple objectives are handled by the additive value model

and an average calculation is needed, the problem does not remain a bi-objective mul-

ticriteria optimization problem. Rather, a biobjective average shortest path problem

is created, the first criteria being the average value model and the second being the

number of arcs in the solution path. This is important because including more than

three criteria typically makes the problem intractable. The average in the original

MALP is still needed and results in a special structure. The special case of the

bicriteria average shortest path problem for the MALP problem is:
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min z = λ1


∑

(i,j)∈E
(1− vi,j)xi,j∑

xi,j

+ λ2
∑

xi,j

s.t.
∑

(i,j)∈E

xi,j −
∑

(j,i)∈E

xi,j =


1, if i=s;

−1, if i=t;

0, otherwise.∑
λk = 1

xi,j ≥ 0 ∀ (i, j) ∈ E

(18)

where xi,j is the flow between node i and j (1 if an arc is used), vi,j(x) is the

multiobjective value of using node i and j, and λk is the multicriteria weight of

criteria k.

This problem is similar but not quite the same as the more general fixed charge

problem, initially formulated by Hirsch and Dantzig in 1968 [49], [97]. A variety

of approaches exist to solve the problem [78], [18], [31], [106] and could be used as

heuristics. Formulation 18 could also be estimated as a special case of the bicriteria

shortest path problem [35], for which many algorithms exist. Since it’s also a special

case of the bicriteria average shortest path problem, faster algorithms are available.

In fact, a separate algorithm is not necessary. We show the information attained from

the solution approaches to Problem 17 is sufficient.

4.3 Solution Approaches

Three solution methods to Problem 17 are given in this section. The first min-

imizes the average path and solves to optimality in O(n3). The second uses a dy-
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namic programming approach to gather longest paths to every node in the network

in O(nm). The third is a heuristic based on dynamic programming that retrieves the

longest path from source to sink in O(m). Each of the algorithms are easily modified

to find either the shortest or longest path in a directed acyclic graph.

4.3.1 Wimer’s Average Path Length Minimization Algorithm.

[108] lays out the initial theoretic foundation for determining the optimal aver-

age path length through the path length minimization algorithm for directed acyclic

graphs. This algorithm pursues the optimal path by determining the best average

path of cardinality j at each node. First, each vertex is assigned a rank according to

its maximum cardinality (number of arcs) of a path from s to the vertex. The source,

s, is obviously assigned a rank of 0 and the sink, t has the highest rank. Vertices are

numbered according to their rank, starting with s, and numbering vertices with equal

ranks arbitrarily. So, s is numbered 1, t is numbered |U | and for every arc e(u, v) the

vertex u is assigned a smaller number than the vertex v.

Define G = (U,E). Let u be a vertex on some path from source s to sink t. Only

the shortest path with cardinality j can be part of the shortest average arc length

path from s to t. Each vertex u ∈ U is next assigned a vector L(u) of length |U |. The

jth element of L(u), Lj(u) with (0 ≤ j ≤ |U |−1), is the minimum length of any path

from s to u with cardinality j. Πj(u) denotes the minimum length path or paths.

Since G(U,E) is acyclic, the cardinality of a path cannot be greater than |U | − 1. If

no path exists for a cardinality, the path is assigned ∞. Another vector Pu of length

|U | is associated with u, whose jth element Pj(u) is the last vertex preceding u on

Πj(u). This is the vertex v for which Lj−1(v) + l(e(v, u)) = Lj(u). If Lj(u) = ∞,

then Pj(u) = 0

Starting at s, a new vertex is marked at each iteration until t is reached. Once
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a vertex u is labeled, the length of the shortest path from s to u is known for every

cardinality between 0 and |U | − 1. The sets of arcs entering and leaving u ∈ U are

denoted Γin(u) and Γout(u). The algorithm is as follows:

Step 0: Initialization. Set L0(s) = 0 and Lj(s) = ∞, 1 ≤ j ≤ |U | − 1. Mark s

and set T = U − {s}. For every u ∈ T set Lj(u) = ∞, 0 ≤ j ≤ |U | − 1. For every

u ∈ U define Pj(u) = ∅, 0 ≤ j ≤ |U | − 1.

Step 1: New Vertex Selection. Find a vertex u ∈ T for which all the tail vertices

of the arcs in Γin(u) are already marked. Such a vertex must exist since G(E,U) is

an acyclic digraph with a single source and a single sink whose vertices are numbered

as described above.

Step 2: Updating the minimum path lengths. Determine the shortest path length

vector Lu by considering every vertex v for which e(v, u) ∈ Γin(u) as follows.

Lj(u) = min{Lj−1(v) + l(e(v, u))|e(v, u) ∈ Γin(u)}, 1 ≤ j ≤ |U | − 1. (19)

Let v∗ be the vertex obtained when solving 19 for given u and j. Then, set Pj(u) = v∗.

Step 3: Updating the set of marked vertices. Mark u and set T = T − {u}.

Step 4: Termination Test. If u = t then go to Step 5, else go to Step 1.

Step 5: Retrieving the minimum average arc length path.

Upon termination, every Lj(t) ≤ ∞ is the length of the shortest path from s to t

among all the paths of cardinality j. For every j satisfying Lj(t) =∞ there exists no

path of cardinality j from s to t. Evidently, min{Lj(t)/j|1 ≤ j ≤ |U | − 1 yields the

minimum average arc length for any path from s to t. Let j∗ be the cardinality of the

path for which the minimum average arc length was obtained. Then, the desired path

is retrieved by traversing backwards from t to s as follows. We start from t and go

backwards to the vertex stored in pj∗(t). We then go backwards to the vertex stored
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in Pj∗−1[Pj∗(t)] and continue in the same manner until s is reached.

Wimer [108] also presents a heuristic in addition to their optimal algorithm. The

vertex balancing algorithm retrieves the minimum average length path using a user

input accuracy setting. While their first algorithm is cubic in nature, this algorithm

runs in exponential time O(2U(U + log(1
ε
)). The algorithm is claimed to converge

very quickly in practice, however it was only tested on networks with a maximum of

10 nodes.

4.3.2 Orlin’s Algorithm.

The average shortest path problem for a directed acyclic graph can be solved using

dynamic programming [82]. ”Assuming you are finding a shortest path from node s

to node t, you can let d(j, k) be the shortest path from node s to node j with exactly

k arcs. (This does not work in networks with cycles because it actually computes the

shortest walk from s to j with k arcs.) The values of d( , ) can be computed using

dynamic programming. The shortest average length of a path from s to t is min d(t,

k)/k for k = 2 to n-1. The same technique computes a shortest average path from

node s to each other node.” We now develop this idea.

Assume a graph G with node-arc cost matrix C and cost coefficients ci,j denoting

a cost from arc i to j. Where no arc exists, use 0 when minimizing and ∞ when

maximizing. The optimal matrix containing the best path in k = 1 to n − 1 arcs to

each of the r = 2 to n nodes is denoted Θ. Therefore, Θ an (n− 1)× (n− 1) matrix

of optimal paths. Each column of Θ is divided by its representative k to give the best

average to each node in k steps. The algorithm stated formally as a maximization is:

Step 1: Assign 1st column of Θ. Let 1st column of Θ equal 1st row of C,

Θ(k − 1, 1) = C(1, l) for k = (2, . . . , n) and l = (2, . . . , n).

Step 2: Assign remainder of 1st row of Θ. Let the first row of Θ be equal to 0,
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Θ(1, k) = 0 for k = (2, . . . , n− 1) .

Step 3: Create remainder of Θ matrix columns. While Θ(r, k−1) and C(r+1, l+1)

are greater than 0, for k = (2, . . . , n− 1),

Θ(l, k) = MAX(Θ(r, k − 1) + C(r + 1, l + 1)) for l = (2, . . . , n− 1) and

r = (1, . . . , l − 1). Else, Θ(l, k) = 0.

Step 4: Use Θ matrix to compute average distances. Divide each element of

columns 2 through n− 1 of Θ by k = (2, . . . , n− 1), giving the average value

from the source to each node.

Step 5: Retrieve Optimal Solution. Optimal average value from s to t is

MAX(Θ(n− 1, :)).

If minimizing, change the maximums to minimums and let the first row of Θ be

equal to ∞ instead of 0 in Step 2. Longest average paths to every node are available

in Step 4. This algorithm solves in O(nm).

4.3.3 Scaling Heuristic.

We begin with a topological sort of the nodes. Following the methodology of [108],

we first assign each vertex according to its maximum cardinality (number of arcs) of

a path from s to the vertex. The source, s, is obviously assigned a rank of 0 and the

sink, t has the highest rank. Vertices are numbered according to their rank, starting

with s, and numbering vertices with equal ranks arbitrarily. So, s is numbered 1, t

is numbered |U | and for every arc e(u, v) the vertex u is assigned a smaller number

than the vertex v. Let the rank of a particular node be denoted R(j). Hence ci,j, the

cost of a unit of flow from i to j, need only be scaled by

R(j)−R(i)

R(t)
. (20)

Let
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c∗i,j = ci,j

(
R(j)−R(i)

R(t)

)
, (21)

and the average shortest path problem becomes

min z =
∑

(i,j)∈E

c∗i,jxi,j

s.t.
∑

(i,j)∈E

xi,j −
∑

(j,i)∈E

xi,j =


1, if i=s;

−1, if i=t;

0, otherwise.

xi,j ≥ 0 ∀ (i, j) ∈ E

(22)

Formulation 22 can now be solved using the Reaching Algorithm from Dynamic Pro-

gramming in linear time O(m). The heuristic is summarized as such:

Step 1: Use Node-Arc Incidence Matrix. Temporarily replace each ci,j > 0 with

1.

Step 2: Use Reaching Algorithm. Use the Reaching Algorithm to solve the longest

path to each vertex giving its maximum cardinality (number of arcs) from s to the

vertex.

Step 3: Assign Ranks to Vertices. Vertices are numbered according to their rank,

starting with s, and numbering vertices with equal ranks arbitrarily. Let the rank of

a particular node be denoted R(k), for k = 1, 2, ..., n vertices.

Step 4: Scaling Arc Costs. Scale the original ci,j’s by R(j)−R(i)
R(t)

. Let c∗i,j =

ci,j

(
R(j)−R(i)

R(t)

)
.

Step 5: Substitute. Replace ci,j with c∗i,j in original formulation.
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Step 6: Use Reaching Algorithm again. Solve new formulation with the Reaching

Algorithm.

Summarizing, the reaching algorithm is used to obtain the maximum number of

arcs to each node; this is used to scale the original cost coefficients. The reach-

ing algorithm is then used a second time to solve the scaled network to optimality.

Small errors are possible when using the heuristic due to the scaling effect, however

theoretically no bound exists on the worst case error.

Theorem 3 The worst case error of the Scaling Heuristic is infinitely large.

Figure 28. Constructed Graph

Proof 3 Assume a network of two paths p1 and p2, with cardinalities of t− 1 and 2,

respectively. Let p denote the arc cost from node t − 1 to t, k the arc cost from s to

t− 1, and k′ the arc cost of all other nodes. Furthermore, assume k′ > k, t > 3, and

p2 has a higher average value than p1. The path p2’s average value is then k+p
2

, while

p1’s average value is (t−2)k′+p
t−1 . Standard error is given by:

x =
k+p
2

(t−2)k′+p
t−1

(23)
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Rearranging terms yields:

x =
k(t− 1) + p(t− 1)

2k′(t− 2) + 2p

(24)

As t→∞, k → 0, k′ → 0, and p→ 1, clearly x→∞.

An example of this phenomenon is given in Figure 29. Clearly, Path 2 has a better

average path length than Path 1. After scaling however, Path 1 appears better than

Path 2.

Figure 29. Example Constructed Graph

The error for any given network will vary; even in this example the error is depen-

dent on k, k′, and p. For instance, letting t → ∞, k → 1, and p → 0, the heuristic

finds the optimal solution, x→ 1. Additionally, the probability of generating the net-

work above approaches 0 as t→∞ [36]. Quite unlikely is the case that any network

be generated that yields an error greater than 2. Nevertheless, the worst case error

can always be bound by bounding the arc costs.

Theorem 4 Bounding an arc cost gives bounds on the worst case error of the Scaling

Heuristic.
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Proof 4 Assume the same network as in Theorem 3 and Figure 28. If a bound is set

on k, a corresponding bound on x can be achieved. Arbitrarily letting k ≥ .1 gives a

bound on x of:

x =
k(t− 1) + p(t− 1)

2k′(t− 2) + 2p

x→ 5.5

(25)

Clearly, as k approaches p, the error approaches 0. Therefore, bounding arc costs

gives bounds on the worst case error.

Again, this example is a worst case network, the probability of encountering this

network in practice is extremely small. Even if the network did arise, bounding with

reasonable values negates the effects. Furthermore, while Theorem 4 gives some com-

fort, testing shows that the error in most networks is minuscule. In the next section,

we examine the performance of the heuristic for 10,000 randomly generated matrices

with bounded and unbounded arc costs. While the worst case error approaches ∞ in

theory, in practice the heuristic performs very well.

4.4 Scaling Heuristic Performance

Three experimental factors were used in testing: number of nodes in the network,

density, and range in the arc costs. Range is the range of values allowed in the

multiobjective value function at each arc and represents the bounding discussed above.

Since values between 0 and 1 are the only achievable levels, the allowable range cannot

be above 1.

To test the heuristic’s performance, networks of varying arc cost ranges, nodes

sizes, and densities were generated using a random number generator. Arc cost range
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varies between 0 and 1 (representing any desired number), node sizes between 50 and

350, and density between .02 and .49 (maximum density in a DAG). Let

X1 - Range in Arc Value

X2 - # of Nodes

X3 - Density

The heuristic was applied to 10,000 randomly generated networks with varying

levels of X. Orlin’s algorithm solved the networks to optimality, the 2 solutions are

compared to obtain the error. The overall average error of the scaling heuristic is 3%

with a 95% confidence the error will be below 13%. To further analyze the origin of

the error, we compared distributions for two groups for each variable. Range appears

to be the most influential factor. Of course, as the range of possible values increases,

one expects error to increase as well. In the case of the MALP, all values will be

between 0 and 1 and therefore a range of 1 is the worst case. Even at this range,

the heuristic performs within bounds of the optimal solution divided by 1.05 for the

most part, which is very desirable. Regardless of the setting at each X, the heuristic

performs very well.

Figure 30. Error Distribution Figure 31. Error Distribution
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Figure 32. Error Distribution Figure 33. Error Distribution

Figure 34. Error Distribution Figure 35. Error Distribution

Simple linear equations were fit to the error to show performance for each of the

variable settings. The results are intuitive and confirm the results above in Figures

37, 36, 38. Error increases as the range in arc value increases. A certain decrease is

realized when increasing the number of nodes in the network or increasing the density.

In general, more nodes equal more possible routes. As possible routes increase and the

heuristic misses the optimal solution, it’s more likely the next best route is closer in

value to the optimal route. Similarly, increasing the density of the network yields more

possible routes and therefore less chance for error. As density decreases, fewer routes

are available, and the probability of the next best route being close to the optimal
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decreases. These results reinforce the benefits of using the heuristic for large scale

networks. Since the optimal algorithms are slightly less efficient on dense networks,

it makes sense to use the heuristic for large scale problems with high density.

Figure 36. Error vs Nodes Figure 37. Error vs Density

Figure 38. Error vs Range of Arc Values
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Fitting a least squares regression model to the error and including terms with a

p-value less than .01 yields the following equation:

Y = 1.03151 + .06705X1− .00004X2− .07311X3− .00014X1X2− .14259X1X3. (26)

where Y is the error. The regression confirms our conclusions from the observed

results. Each of the variables and two of the interactions significantly contribute to

the error. The model is a poor predictor of error however, with an R2 below .2. Next,

the usefulness of the methods is demonstrated on an example application problem.

4.5 Application

This methodology is directly applicable to the transportation mode selection prob-

lem. It allows selection of the best mode of transportation given important factors to

a decision maker. For instance, in freight transportation, important factors include

cost, shipping speed, reliability, loss and damage, and flexibility [25]. These quali-

tative and quantitative variables are best captured with the VFT or AHP function

in Equation 15. Each arc represents the various transportation options and transfer

points are nodes. Clearly, the combination of transportation options that maximizes

the average value through the network is the desired route. This section creates no-

tional networks of 100 nodes, varying densities, and arc values ranging between 0 and

1.

The scaling heuristic solves a network of any size in linear time, but the focus now

is on the value in using Wimer’s or Orlin’s algorithms. These algorithms are used

to create optimal and non-optimal paths and values from which a decision maker

can make tradeoffs. The optimization problem from Formulation 18 in Section 4.2
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underlie the graphs in this section. As a weighted sum problem, we are seeking to

make tradeoffs between increasing value in the network and decreasing arcs utilized.

Each of the graphs are generated with the distance matrix from Orlin’s or Wimer’s

algorithm. Because the shortest path to each node is known, we can easily get the

shortest average path to every node, along with the number of arcs to each node.

Formulation 18 is a special case of the bicriteria average shortest path problem which

allows tradeoff between total value and number of arcs.

Figures 39,40,41,42 show surfaces created by random graphs. Each surface is

unique. In Figure 39 for instance, the optimal solution is somewhere around 7 arcs.

However, the decision maker could choose to sacrifice roughly .07 in value to go from

source to sink in one arc. In contrast, going from the source to sink in one step in

Figure 40 creates a significant loss of value, around .5. Figure 42 shows a discontinuous

efficient frontier. For arc lengths around 4, the solution is strictly dominated by the

arc length of 1, but also dominated by some arc lengths greater than 5.

Figure 39. Values vs Arcs Figure 40. Values vs Arcs

The optimal solution to the graph in Figure 43 is a 10 arc path (1 10 18 28 39 47

48 84 91 94 100) with an optimal average value of 0.9765. Table 11 shows all paths

shorter than the optimal path. All paths longer than the optimal solution in this case
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Figure 41. Values vs Arcs Figure 42. Values vs Arcs

give a worse solution. The optimal path and all paths in Table 11 strictly dominate

the longer paths to the right. In this case, the user may choose the path with 2 arcs

and a value of .9223 rather than choosing the optimal value of .9765 with 9 arcs. In

many cases, an added value of .05 or .1 may not be worth adding multiple arcs. In

other cases however, transfers may require minimal effort and therefore the user may

choose to optimize value and ignore arc length.

Table 11. Arcs vs Value

Number of arcs 1 2 3 4 5 6 7 8 9
Value 0.6905 0.9223 0.9549 0.9604 0.9631 0.9665 0.9685 0.9733 0.9765
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Figure 43. Values vs Arcs
Figure 44. Closeup of Efficient Frontier in
Figure 43

Figure 45. Values vs Arcs
Figure 46. Closeup of Efficient Frontier in
Figure 45

4.6 Conclusion

Integrating value focused thinking or the analytic hierarchy process with the short-

est path problem allows a decision maker to capture multiple factors in a network

environment. The resulting multiobjective average longest path problem has clear

applications to a variety of problems. We presented an algorithm and heuristic to

solve the MALP for directed acyclic graphs more efficiently than current methods and

revealed the usefulness of both our methods and those in the literature. The heuristic
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performed satisfactorily when applied to a number of randomly generated matrices.

As number of nodes and density increase, the heuristic obtains better solutions and

should therefore be used in large scale networks. Additionally, since tradeoffs between

value and number of arcs exist, a multicriteria optimization of the MALP is useful to

a decision maker. The path chosen along the efficient frontier created by Orlin’s and

Wimer’s algorithms is dependent on the application. When transfers are a concern,

shorter paths with less value may be more appealing. Transportation mode selection

is one intuitive application for this methodology yet it could be applied to a multitude

of existing problems.
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Abstract

Multicriteria (or Multiobjective) decision analysis (MCDA/MODA) is implemented

into the minimum cost flow problem; this creates a multiobjective average minimum

cost flow (MAMCF) problem, a problem equivalent to the average minimum cost

flow problem. We show the problem is NP-complete for general graphs. However, for

directed acyclic graphs efficient pseudo-polynomial time heuristics are possible. An

average shortest path algorithm is implemented in a successive shortest path fashion

to create an efficient average minimum cost flow heuristic. Furthermore, an average

shortest path heuristic is used successively as an even faster average minimum cost

flow heuristic. This scaling method is developed to estimate the average shortest path

problem and extended to approximate the average minimum cost flow problem. Both

heuristics are then proven to have an infinitely large error bound. However, in random

networks the heuristics generate solutions within a small percentage of the optimal

solution. Finally, a general bicriteria average minimum cost flow (BAMCF) problem

is given. In the case of the MAMCF, decision makers may choose to minimize arcs

in a path along with maximizing multiobjective value. Therefore, a special case of

the BAMCF is introduced allowing tradeoffs between arcs and value. This problem is

clearly NP-hard, however good solutions and equivalent solution times are attainable

using the pseudo-polynomial time heuristics for solving the average minimum cost

flow problem.

Keywords

network flows, decision analysis, heuristics, multiple objective programming
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5.1 Introduction

Multiobjective decision analysis (MODA) or multicriteria decision analysis (MCDA)

techniques such as the analytic hierarchy process [89] and value focused thinking

[61],[60] are used widely in decision making applications [38], [104]. Putting these in

the context of the minimum cost flow problem creates a unique problem we call the

multiobjective average minimum cost flow (MAMCF) problem. Current minimum

cost flow algorithms cannot solve the MAMCF or the average minimum cost flow

problem (AMCF) as the problems are non-additive in nature. Non-additive mini-

mum cost flow research is an up and coming area, however algorithms are not yet

available. The average minimum cost flow problem is a special case of the non-additive

minimum cost flow problem; specialized heuristics can therefore exploit the problems

structure for efficiency. We begin by introducing concepts from decision analysis and

network optimization.

The general additive value model is

vj(x) =
∑

wivi(xij) (27)

for i = 1, 2, ..., n measures and j = 1, 2, ...,m alternatives, where vi(xij) is the single

dimension value function of measure i for alternative j, wi is the weight of measure

i, and vj(x) is the multiobjective value for alternative j. The additive value model

is used throughout as an example, however other multiobjective methods are easily

interchangeable with Equation 27 in the proposed methodology.

Network optimization is a thriving area of research and multiple problems exist

[3]. Given a graph G = (V,E), the general minimum cost flow (MCF) problem is:
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min z =
∑

(i,j)∈E

ci,j,xi,j

s.t.
∑

(i,j)∈E

xi,j −
∑

(j,i)∈E

xi,j = s(i) ∀ i ∈ N

li,j ≤ xi,j ≤ ui,j ∀ (i, j) ∈ E

(28)

where xi,j is the flow from vertex i to j, ci,j is the cost of a unit of flow from i to

j, li,j is the lower bound on the flow from i to j, ui,j is the upper bound on the flow

from i to j, and s(i) is the supply or demand at node i.

The shortest path problem is a special case of the minimum cost flow problem

where s(i) is 1,-1, or 0. A dynamic programming algorithm that solves the shortest

path problem for directed acyclic graphs in linear time O(m) is called the Reaching

Method [28]. The same method can be used in a successive shortest path fashion to

solve the minimum cost flow in directed acyclic graphs. Choose the shortest path

and reduce flow by the minimum arc capacity on that path, then repeat until flow

is satisfied. The Reaching Method begins with a topological sort of the nodes and

labels each vertex successively.

Step 1: Topologically order the DAG G

Step 2: For i = 1, ..., n, set dist(i)=0

Step 3: For i = 1, ..., n− 1, for each edge V (i), u outgoing from V (i), if dist(Vi) +

G(Vi, u) > dist(u), then set dist(u) = dist(Vi) + G(Vi, u)

Step 4: dist(n) is the longest path to n
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The algorithm above is easily modified to gather the shortest or longest path to every

node. This dynamic programming approach is used in the proposed successive average

shortest path scaling heuristic.

Many times, a decision maker may need to make tradeoffs between differing ob-

jectives in a minimum cost flow environment. This problem is called the multiple

objective minimum cost flow problem (MMCF) [47]. The multiobjective minimum

cost flow problem is a special case of multiobjective linear programming (MOLP)

which is a special case of multiple objective programming (MOP). For objective func-

tions of 3 or greater, the MMCF is intractable. In fact, even in the special case of

the bicriteria minimum cost flow (BMCF) with 2 objective functions, the number of

non-dominated points on the efficient frontier is exponential in size [88]. The BMCF

objective functions are

min(f1(x), f2(x)) (29)

where the constraint set remains as that in Formulation 28. With this formulation,

decision makers are able to make trade-offs between competing objectives and see the

outcomes of these tradeoffs. [35] defines the types of efficiency for a feasible solution

x̂ ∈ X:

• weak efficiency - no other x ∈ X such that f(x) < f(x̂)

• strict efficiency - no other x ∈ X, x 6= x̂ such that f(x) ≤ f(x̂)

• proper efficiency - there is a real number M > 0 such that ∀ i and x ∈ X

satisfying f(x) < f(x̂), there exists an index j such that f(x̂) < f(x) and

f(x)−f(x̂)
f(x̂)−f(x) ≤ M.

The most popular method of generating the efficient set or set of pareto opti-

mal solutions are though scalarization techniques such as the weighted sum method.
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Letting λ ∈ Rp
≥, the weighted sum linear program LP(λ) is

min λTCx

subject to Ax = b

x ≥ 0.

The idea with this is to generate all efficient solutions. In the case of the MMCF

however, this can be an exponential number of solutions. Therefore, more specialized

algorithms exist to generate these solutions or some subset of the efficient solutions

[47]. Generating all solutions is thought to be too confusing for the decision maker;

generating some subset of the efficient solutions is more practical in many cases. The

bicriteria average minimum cost flow introduced in the next section is similar to this

problem but more difficult because of the inherent non-linearity.

5.2 Problem Definitions and Formulations

Variants of the minimum cost flow problem are plentiful [3]. The minimal average

cost flow variant was first formulated to minimize a total cost, consisting of a fixed

cost of using a network plus a variable cost per unit of flow, divided by the total flow

[12]. Our variant of the problem seeks to minimize the average cost per unit of flow

for every arc. The maximization version of the multiobjective formulation (using a

value function as cost) as a non-linear optimization problem is:
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max z =

∑
(i,j)∈E

(
l∑

k=1

wkvi,j,k

)
xi,j∑

xi,j

s.t.
∑

(i,j)∈E

xi,j −
∑

(i,j)∈E

xj,i = s(i) ∀ i ∈ N,

xi,j ≥ 0 ∀ i, j ∈ E
l∑

k=1

wk = 1

(30)

where wk is the weight of measure k, vi,j,k is the value function at measure k

between nodes i and j, s(i) is supply or demand entering or leaving the node i, and

xi,j is the flow from vertex i to j. To convert this to a general average minimum cost

flow problem, the
l∑

k=1

wkvi,j,k is replaced by a cost coefficient ci,j and change from

maximum to minimum. The constraint set remains unimodular similar to the normal

minimum cost flow problem if each s(i) and the lower and upper bounds on xi,j are

integer. If minimization is required, simply negate the objective function or replace
l∑

k=1

wkvi,j,k with
l∑

k=1

1− wkvi,j,k.

There is a negative to optimizing the average value through the network; the

heuristics may choose a very long path (long in # of arcs) of optimal average value

rather choosing a much shorter path with a slightly lower average value. One way

to offset this problem is through a special case of the bicriteria average minimum

cost flow problem trading off number of arcs with average value. The more general

bicriteria average minimum cost flow is given first, where one objective function is

required to be an average.
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min f1(x) =

∑
(i,j)∈E

(ci,j)xi,j∑
xi,j

min f2(x)

s.t.
∑

(i,j)∈E

xi,j −
∑

(j,i)∈E

xi,j = s(i) ∀ i ∈ N,

xi,j ≥ 0 ∀ i, j ∈ E

(31)

where xi,j is the flow between node i and j, ci,j is the cost of using node i and j,

s(i) is supply or demand entering or leaving node i, and f2(x) is some function linear

or otherwise. A special case of this problem trading off arcs and average value is

min z = λ1


∑

(i,j)∈E
(1− vi,j)xi,j∑

xi,j

+ λ2
∑

xi,j

s.t.
∑

(i,j)∈E

xi,j −
∑

(j,i)∈E

xi,j = s(i) ∀ i ∈ N,

xi,j ≥ 0 ∀ i, j ∈ E

(32)

where xi,j is the flow between node i and j, vi,j is the multiobjective value of

using node i and j, s(i) is supply or demand entering or leaving node i, λk is the

multicriteria weight of criteria k, and
∑
λk = 1.

Bicriteria minimum cost flows are a special case of the multiobjective minimum

cost flow problem, which is a special case of the more general multiobjective linear

program. In the same way, this problem is special case of the BAMCF, which is a
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special case of the multiobjective average minimum cost flow problem that is a special

case of the multiobjective program. Generating efficient solutions for bicriteria mini-

mum cost flow is intractable in general [88]. This obviously carries over to the more

difficult bicriteria average minimum cost flow problem. In the upcoming sections, we

show how to estimate a subset of the efficient frontier using a pseudo-polynomial time

heuristic. This gives a workable number of efficient solutions from which to choose in

a reasonable amount of time.

5.3 NP-Hardness

Garey and Johnson [42] describe the theory of NP-Completeness. Many problems

are shown to be NP-complete by reduction to known NP-complete problems. Several

problems are transformed into the exact cover by 3-sets (X3C) [42], which is trans-

formed from the 3-dimensional matching, a known NP-complete problem [58]. In this

section we show the average minimum cost flow problem reduces to the exact cover

by 3-sets problem, thus proving the MAMCF or AMCF problem to be NP-complete.

The following theorems hold for general graphs.

Theorem 5 The average minimum cost flow problem is strongly NP-Complete.

Proof 5 Create an instance of the exact cover by 3-sets (X3C), a known NP-Complete

problem. The X3C decision problem from [42] is:

INSTANCE: A set X of 3q elements, X = 1, 2, 3, ..., 3q, and a collection C =

s1, s2, ..., sm, of sets of cardinality 3.

QUESTION: Does a subcollection C ′ ⊆ C exist such that every element of X is

contained in exactly one set of C ′?
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We transform the X3C problem into the average minimum cost flow problem by

constructing an instance as such:

1. Create Nodes:

(a) Define a source node s, with supply 3m.

(b) Define m transhipment nodes, each with an outdegree of 3, corresponding

to the set C.

(c) Define 3q sink nodes, each with demand 1, corresponding to the set X

2. Create Arcs:

(a) Define arcs (s, Ci) with capacity 3 and cost 0 for i = 1, 2, ...,m .

(b) Define arcs (Ci, xj) when xj is contained in the set Ci, for i = 1, 2, ...,m

and j = 1, 2, ..., 3q. Each of these arcs has capacity 1 and a cost of -1.

If the answer to the exact cover by 3-sets question above is yes, then clearly there

exists an average minimum cost flow with an average of −1
2

(as calculated in Formu-

lation 30) and a flow of 3q where q is obviously equal to the number of 3-sets chosen

from C. Because the demand of the nodes in X is such that the sum is exactly 3q

(or supply), any feasible flow through the network corresponds to an exact cover by

3-sets. Conversely, an average minimum cost flow through the network must satisfy

demand in X or be the trivial solution 0. Thus, since the arcs (Ci, xj) are less than

0, any average minimum cost flow solution will always equal −1
2

and have a flow of
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Figure 47. Constructed Instance of the Average Minimum Cost Flow Problem

3q. Therefore, any average minimum cost flow solution will always correspond to an

exact cover by 3-sets.

Corollary 1 Any average minimum cost flow problem is strongly NP-Complete even

if the arc capacities are all equal to 1.

Figure 48. A Constructed Instance of the Average Minimum Cost Flow Problem with
Arc Capacities of 1

Proof 6 In Theorem 5.3, replace the arcs (s, Ci) with 3 arcs of capacity 1 for i =

1, 2, ...,m and cost 0 as before. Also add 3m nodes between each s and Ci as shown
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in Figure 48. Each arc in Figure 47 now has a capacity of 1, the result follows.

The average maximum cost flow proof is similar and left to the reader. Given the

average minimum cost flow problem is proven NP-hard, it follows that the biobjective

average minimum cost flow problem is NP-hard. Even in the special bicriteria case

of Formulation 32, the problem remains NP-hard. Directed acyclic graphs make the

problem easier yet an exponential number of efficient solutions are still possible [88].

5.4 Pseudo-Polynomial Time Heuristics for Directed Acyclic Graphs

This section introduces two successive average shortest path heuristics to esti-

mate the average minimum cost flow problem for directed acyclic graphs. Successive

shortest path algorithms for the minimum cost flow problem are optimal, but this is

not the case for the average minimum cost flow problem. Successive average shortest

path heuristics obtain a feasible solution with each iteration but violate the mass bal-

ance constraints until near optimality is achieved. The algorithm terminates when the

mass balance constraints are satisfied. Optimality is maintained throughout while the

algorithm works to achieve feasibility. Although very efficient, we show the potential

error of the successive average shortest path algorithms is infinitely large. However,

with realistic bounds on our arc coefficients, the error is quite low.

5.4.1 Successive Average Shortest Path with Dynamic Programming.

The average shortest path problem for a directed acyclic graph can be solved

using dynamic programming [81], [57]. We take this concept a step further and define

the successive average shortest path heuristic. This works in the same fashion as

successive shortest path algorithms for the minimum cost flow problem: a shortest

average path is obtained and called a pseudoflow, the maximum flow possible is sent

through this path and the arc capacities are updated, the algorithm continues until
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all flow requirements are met.

Assume a graph G with node-arc cost matrix Cm and cost coefficients ci,j denoting

a cost from arc i to j. Recall the supply to node i is s(i); s(s) and s(t) for the source

and sink nodes, respectively. Where no arc exists, use 0 when minimizing and ∞

when maximizing. The optimal matrix containing the best path in k = 1 to n − 1

arcs to each of the r = 2 to n nodes is denoted Θ. Therefore, Θ an (n− 1)× (n− 1)

matrix of optimal paths. Each column of Θ is divided by its representative k to give

the best average to each node in k steps. Furthermore, an arc capacity matrix is

defined πi,j, Pi is the ith path, and zi corresponds to the objective function of the ith

path. The algorithm stated formally as a maximization is:

Step 1: Assign 1st column of Θ. Let 1st column of Θ equal 1st row of C,

Θ(k − 1, 1) = C(1, l) for k = (2, . . . , n) and l = (2, . . . , n).

Step 2: Assign remainder of 1st row of Θ. Let the first row of Θ be equal to 0,

Θ(1, k) = 0 for k = (2, . . . , n− 1) .

Step 3: Create remainder of Θ matrix columns. While Θ(r, k−1) and C(r+1, l+1)

are greater than 0, for k = (2, . . . , n− 1),

Θ(l, k) = MAX(Θ(r, k − 1) + C(r + 1, l + 1)) for l = (2, . . . , n− 1) and

r = (1, . . . , l − 1). Else, Θ(l, k) = 0.

Step 4: Use Θ matrix to compute average distances. Divide each element of

columns 2 through n− 1 of Θ by k = (2, . . . , n− 1), giving the average value

from the source to each node.

Step 5: Determine Average Shortest Path. Optimal average value from s to t is

MAX(Θ(n− 1, :)).

Step 6: Update Arc Capacities. Decrease arc capacities by ai = min(πi,j) on path

Pi corresponding to zi.

Step 7: Update Supply, Flow, and Cost Matrix. Update supplies s(i) and flow.
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Cost matrix Cm updates by changing ci,j to 0 if πi,j = min(πi,j). Reduce the remainder

of πi,j’s on path Pi by min(πi,j).

Step 8: Test for Near Optimality. If
∑
ai = −s(t), you have satisfied all con-

straints and have a near optimal solution, else return to Step 1.

If minimizing, change the maximums to minimums and let the first row of Θ be

equal to∞ instead of 0 in Step 2. Longest average paths to each node are then known

in Step 4. The running time of the algorithm is O(nmC), where C is max capacity

of arcs. Since C is not necessarily bound by a polynomial, the worst case complexity

is pseudo-polynomial.

5.4.2 Successive Average Shortest Path with a Scaling Heuristic.

The running time of the successive average shortest path with a scaling heuristic

is O(mC) linear time, where C is max capacity of arcs. This is an order of magnitude

faster than the previous heuristic.

Following the methodology of [108], we first assign each vertex according to its

maximum cardinality (number of arcs) of a path from s to the vertex. The source,

s, is obviously assigned a rank of 0 and the sink, t has the highest rank. Vertices are

numbered according to their rank, starting with s, and numbering vertices with equal

ranks arbitrarily. So, s is numbered 1, t is numbered |U | and for every arc e(u, v) the

vertex u is assigned a smaller number than the vertex v. Let the rank of a particular

node be denoted R(j). In the same as above, an arc capacity matrix is defined πi,j,

Pi is the ith path, and zi corresponds to the objective function of the ith path. The

heuristic is summarized as such follows:

Step 1: Use Node-Arc Incidence Matrix. Temporarily replace each ci,j > 0 with

1.

Step 2: Use Reaching Algorithm. Use the Reaching Algorithm to solve the longest
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path to each vertex giving its maximum cardinality.

Step 3: Assign Max Cardinality. Assign each vertex a rank according to its

maximum cardinality (number of arcs) of a path from s to the vertex.

Step 4: Assign Ranks to Vertices. Vertices are numbered according to their rank,

starting with s, and numbering vertices with equal ranks arbitrarily. Let the rank of

a particular node be denoted R(k), for k = 1, 2, ..., n vertices.

Step 5: Scaling Arc Costs. Scale the original ci,j’s by R(j)−R(i)
R(t)

. Let c∗i,j =

ci,j

(
R(j)−R(i)

R(t)

)
.

Step 6: Substitute. Replace ci,j with c∗i,j in original formulation.

Step 7: Use Reaching Algorithm again. Solve new formulation with the Reaching

Algorithm to determine the shortest average path.

Step 8: Update Arc Capacities. Decrease arc capacities by ai = min(πi,j) on path

Pi corresponding to zi.

Step 9: Update Supply, Flow, and Cost Matrix. Update supplies s(i) and flow.

Cost matrix Cm updates by changing ci,j to 0 if πi,j = min(πi,j). Reduce the remainder

of πi,j’s on path Pi by min(πi,j).

Step 10: Test for Near Optimality. If
∑
ai = −s(t), you have satisfied all con-

straints and have a near optimal solution, else return to Step 1.

Summarizing, the reaching algorithm is used to obtain the maximum number of

arcs to each node. Using this, the original cost coefficients are scaled. The reaching

algorithm is then used a second time to solve the shortest path in the scaled network

to optimality. The arc capacities on this shortest path are decreased by the smallest

capacity and the algorithm then repeats itself. Small errors are possible when using

the heuristic due to the scaling effect, however no bound exists on the worst case error.

In fact, it’s been proven that the worst case error of the average Scaling Heuristic is

infinitely large [57] even for the average shortest path problem.
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5.4.3 Error Bounds.

Theorem 6 The worst case error of the Scaling Heuristic for average shortest paths

is infinitely large.

Figure 49. Constructed Graph

Proof 7 Assume a network of two paths p1 and p2, with cardinalities of t− 1 and 2,

respectively. Let p denote the arc cost from node t − 1 to t, k the arc cost from s to

t− 1, and k′ the arc cost of all other nodes. Furthermore, assume k′ > k, t > 3, and

p2 has a higher average value than p1. The path p2’s average value is then k+p
2

, while

p1’s average value is (t−2)k′+p
t−1 . Standard error is given by:

x =
k+p
2

(t−2)k′+p
t−1

(33)

Rearranging terms yields:

x =
k(t− 1) + p(t− 1)

2k′(t− 2) + 2p

(34)

As t→∞, k → 0, k′ → 0, and p→ 1, clearly x→∞.

The error for any given network will vary; even in this example the error is depen-
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dent on k, k′, and p. As t → ∞, k → 1, and p → 0, the heuristic finds the optimal

solution, x → 1. Additionally, the probability of generating the network above ap-

proaches 0 as t → ∞ [36]. Quite unlikely is the case that any network be generated

that yields an error greater than 2.

This becomes a mute point since the worst case error for either of the above

successive average shortest path heuristics approaches ∞ as well.

Theorem 7 The worst case error of any successive average shortest path heuristic

for the average minimum cost flow problem is infinitely large.

Proof 8 Assume a network with arc capacities of 1 as in Figure 50, we’ve already

shown this problem to NP-Hard in Corollary 5.3. Denote Pi as path i for i = 1 to 4,

with average values of zi.

Figure 50. Constructed Instance of the Average Minimum Cost Flow Problem

P1: 1 → 2 → 4

P2: 1 → 2 → 3 → 4

P3: 1 → 3 → 4
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P4: 1 → 3 → 5 → 4.

Assume z1 + z3 < z2 + z4 and z2 < z1, z3, z4. Let z4 → ∞. Any successive average

shortest path algorithm will initially choose the shortest path through the network.

In this case, when P2 is chosen, the only path available to choose is P4 since arc

capacities are 1, meaning z2 + z4 → ∞. The standard error is defined as x = z
z∗

,

where z∗ is the optimal solution. Therefore x = z2+z4
z1+z3

. Clearly, as z4 →∞, x→∞.

While in theory, the worst case error of both heuristics approaches∞, in practice

the heuristics perform very well.

5.5 Heuristics Performance and Application

This section compares the performance of the heuristics and describes possible

applications. For all the graphs in this section, assume we are trying to maximize

value vi,j rather than minimize 1 − vi,j. As discussed above, the heuristics are in-

terchangeable with respect to maximization and minimization; maximizing value in

practice is more intuitive.

5.5.1 Performance Comparison of Heuristic Methods.

This section compares the performance of the successive shortest path heuristics

for the average minimum cost flow problem. The best average minimum cost flow

through the network can be no better than the best average shortest path through

the network. Therefore, we compare the performance of the heuristics against each

other and the average shortest path, giving a worst case error. In reality, the error

will be lower. The matrices used in the analysis were randomly generated using ran-

dom arc costs between 0 and 1, number of nodes between 50 and 350, and density

between .01 and .49. Arc capacities were randomly assigned between 10 and 50 and
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supply between 50 and 200. Obviously, increased supply and decreased arc capaci-

ties will result in greater estimated error. More repetitions completed by a successive

shortest path heuristic will bring the overall average further from the original shortest

path. The random components typically required 20 to 40 repetitions of the shortest

path algorithm. Figure 51 shows the cumulative distribution of errors for the suc-

cessive shortest path heuristic using dynamic programming. This heuristic performs

very well in practice for random graphs, errors are almost entirely below 1.2, or 20%

from the optimal solution, with 95% below 1.1 and none over 35%. The 95% confi-

dence interval for the successive shortest path heuristic using dynamic programming

is 1.024 < x < 1.029.

Figure 51. Cumulative Distribution Func-
tion for Successive SP with DP

Figure 52. Cumulative Distribution Func-
tion for Successive SP with Scaling Method

The successive average shortest path heuristic using the Scaling method performed

adequately as well. The majority of errors were below 1.4 with well over half below

1.2. 17 anomalies occurred with errors above 2 times the optimal, a worse case of

9.61. This is expected given the compounding error discussed in the proofs from

the previous section. The 95% confidence interval for the successive shortest path

heuristic using the scaling heuristic is 1.19 < x < 1.27, and cumulative distribution
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function is shown in Figure 52. Since the running speed of the heuristic is much faster,

a decision maker will still benefit from using the heuristic on large scale problems.

5.5.2 Application.

In some areas of application, a decision maker may wish to not only maximize

value, but also to minimize the number of arcs used in the solution. For instance,

consider transportation mode selection. Nodes, or points of transfer, may have some

damage percentage associated with them. Increased handling may not be desirable.

The bicriteria problem introduced in Section 3.2 is the solution to this problem.

The bicriteria shortest path problem is already proven NP-complete, except in the

case of a directed acyclic graph where it’s P-complete [94], [35]. The bicriteria average

shortest path problem is at least as hard and must have similar complexity. Since

we’ve proven the average minimum cost flow problem is NP-Complete, it follows that

the bicriteria average minimum cost flow problem is NP-Complete. Recall the parts

of the objective function in Formulation 32. The first part of the objective function

is simply the average

∑
(i,j)∈E

(1− vi,j)xi,j∑
xi,j

. (35)

The second half is the total capacity of each arc used in the solution of the average

minimum cost flow

∑
xi,j. (36)

The bicriteria problem works in the same way as the successive shortest path algo-

rithm with one slight change. Rather than minimizing the average shortest path, the

algorithm minimizes the objective function from Problem 32 in Step 5 of the algorithm
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from Section 5.4.1. It’s also intuitive to treat the problem as an integer program. The

n− 1 row of the Θ matrix is the shortest average path to the sink node in some yi,j.

Let a1 = 0, b1 = 1, A1 = min

( ∑
(i,j)∈E

(1− vi,j)xi,j

)
, B1 = max

( ∑
(i,j)∈E

(1− vi,j)xi,j

)
,

a2 = 0, b2 = 1, A2 = min (
∑
yi,j), and B2 = max (

∑
yi,j) where yi,j = 1 when arc i, j

is used for some number of arcs yi,j. Normalizing the objective function gives

min z = λ1

a1 +

 ∑
(i,j)∈E

((1− vi,j)xi,j −A1)

 ∗ b1 − a1
B1 −A1

+ λ2

(
a2 +

(
(
∑

(yi,j −A2)) ∗
b2 − a2
B2 −A2

))
.

(37)

The algorithm chooses the number of arcs and value that minimizes Equation 37

in accordance with the decision makers preferences as captured in the λ values.

Figure 53. Efficient Frontier
Figure 54. Multicriteria Value for λ1 = 1,
λ2 = 0

The algorithm begins with generation of the shortest path efficient frontier as

in Figure 53. These values are transformed in accordance with the decision makers

preference as shown in Figures 54, 55, and 56. The minimum value relating to some

path is chosen; arc capacities along this path decreased and the algorithm generates

a new shortest path efficient frontier. Notice the minimum points in Figures 54, 55,

and 56 correspond to one of the solutions on the efficient frontier in Figure 53.
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Figure 55. Multicriteria Value for λ1 = 0,
λ2 = 1

Figure 56. Multicriteria Value for λ1 = .5,
λ2 = .5

Figures 57,58,59,60,61,62 show the efficient frontier for the shortest path of an-

other graph G as it evolves over time using the successive shortest path algorithm.

Slight changes occur with each iteration of the algorithm. The shortest path efficient

frontiers will change based on the λ value specified.

Figure 57. 1st Efficient Frontier Figure 58. 2nd Efficient Frontier

Although we are using an algorithm to solve each of these average shortest path

problems, the efficient frontier of the average minimum cost flow problem is still an

estimate, be it a very good estimate as shown in the previous section. The pseudo-

polynomial time heuristic from Section 5.4.1 is used to generate the estimated efficient
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Figure 59. 3rd Efficient Frontier Figure 60. 4th Efficient Frontier

Figure 61. 5th Efficient Frontier Figure 62. 6th Efficient Frontier

130



solutions. It remains pseudo-polynomial because the number of value for λ must

be bounded by some constant. Therefore, the complexity reduces to O(λnmC) ≈

O(nmC).

The estimated efficient solutions for example average minimum cost flow problems

are given in Figures 63, 64, 65, and 66. For each of these, graphs of around 100 nodes

were generated. Arc ranges varied between 0 and 1, total supply between 50 and 150,

and density between .08 and .45. Higher supply resulted in more repetitions of the

average shortest path algorithm, which resulted in more possible efficient solutions.

Another interesting point to note, generating the efficient frontier sometimes produced

a solution better than the optimal average in both value and arcs.

Figure 63. MCO Efficient Frontier Figure 64. MCO Efficient Frontier

131



Figure 65. MCO Efficient Frontier Figure 66. MCO Efficient Frontier
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5.6 Conclusions

The importance of the multiobjective average minimum cost flow problem is now

clear; it allows any quantitative or qualitative factors to be incorporated into a min-

imum cost flow structure. We’ve shown the problem is NP-Complete for general

graphs, including the single source single sink problem. For directed acyclic graphs

however, pseudo-polynomial heuristics are possible that estimate within 3% of the

optimal solution. The question of whether the principles used in solving graphs with

cycles for minimum cost flow problems are relevant for average minimum cost flows

is still open. Even though the worst case error bounds for any successive average

shortest path heuristic is infinitely large in theory, in random graphs both heuristics

presented perform satisfactorily. In practice, it may not make sense to simply op-

timize average value. For instance, in transportation mode selection, more transfer

points may result in unexpected damage. The bicriteria average minimum cost flow

problem allows the tradeoff of number of arcs and average value. Efficient solutions

are generated using the pseudo-polynomial successive average shortest path heuris-

tics for the average minimum cost flow problem. This estimated efficient frontier is

a small percentage from the true efficient frontier and gives a decision maker good

solutions from which to choose.

Acknowledgements

This research was funded by the United States Department of Defense, specifically

United States Transportation Command and the United States Air Force. A big

thanks to Dr. James Orlin for his ideas and comments.

133



VI. Further Contributions

The 3 previous chapters contained articles for publication in various journals.

This chapter is additional research completed but not yet in publication format.

The inventory theory and value focused thinking section contains work suitable for

publication in a supply chain journal. The targeted journal for the section on variants

of the network flow problem is Operations Research Letters.

6.1 Transportation Mode Selection Hierarchy and Objectives

Obviously, the fundamental objective of any company or organization is to run

a successful operation. This entails doing transportation mode selection well. Many

articles attempt to do transportation mode selection well by minimizing some cost,

maximizing reliability, or choosing a quality shipping company. Another goal is to

ensure a product doesn’t stock out due to low reliability, but the reason a stock out

is dangerous is because demand may be unmet. Why does demand need to be met?

If demand is not met, customers will go elsewhere which decreases revenue. So the

real reason for maximizing reliability is to maximize revenue. The real objectives of

a company are to minimize costs (this is not simply transportation costs), maximize

revenue (by meeting demand), and maximize employee satisfaction. In light of this,

we now propose a value focused thinking hierarchy for transportation mode selection.

The idea behind the use of value focused thinking is to provide logistics decision

makers with a defendable analysis for choosing the best transportation mode/carrier

to ship products between locations. By accounting for differing preferences, the model

is adaptable to both civilian and military transportation. The ideas are kept at the

strategic level, the interest is not in modeling day to day operations. Since VFT is

being combined with network optimization, certain measures aren’t needed in the
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value hierarchy. Capacity limitations, infrastructure, and equipment availability are

captured with the network optimization model. Characteristics of goods is the driving

force behind the value model, each measure changes with the type of good being

shipped. Distance is inherent in the network model as well.

Figure 67 includes a number of these measures in an example value hierarchy. Any

others simply fall under another means objective.

Figure 67. Transportation Mode Selection Value Model

The values from Figure 67 are the arc costs in the shortest path and minimum

cost flow problem.
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6.2 Variants of the Average Shortest Path and Average Minimum Cost

Flow Problem

Several variants naturally flow out of the problems in the previous chapters.

Theorem 8 The single source single sink average minimum cost flow problem is NP-

Complete.

Figure 68. Constructed Instance of the Single Source Single Sink Average Minimum
Cost Flow Problem

Proof 9 This is similar to the proof of Theorem ??, except we define a single sink

as follows. Let a single arc emanate from each node in the set X, such that each xj

is connected with node t for j = 1, 2, ..., n, and each has a cost of 0 and capacity of 1,

as in Figure 68. Obviously, the average minimum cost flow corresponds to an exact

cover by three sets just as in Theorem ??.

Corollary 2 Any average minimum cost flow problem is strongly NP-Complete even

if the arc capacities are all equal to 1.
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Figure 69. Constructed Instance of the Average Minimum Cost Flow Problem

Proof 10 In Theorem’s ?? and 6.2, replace the arcs (s, Ci) with 3 arcs of capacity

1 for i = 1, 2, ...,m and cost 0 as before. Also add 3m nodes between each s and Ci

as shown in Figure 69. Each arc in Figures ?? or 68 now have a capacity of 1, the

result follows.

Theorem 9 The average minimum cost flow problem with homogeneous positive arc

costs is solvable in polynomial time P.

Proof 11 It is easy to see this reduces to the maximum flow problem. Any path in the

network will have the same average value as any other path. Therefore, the problem

reduces to finding any feasible flow through the network satisfying node demands, a

special case of the maximum flow problem, which is known to solve in polynomial time

[3].

We may also wish to reduce this to the minimum cost flow problem because no

negative cycles exist when arc costs are positive. This ensures we are not taking

the longest path through the network even though it will have the same average as

the shortest path through the network, which could be desirable even if we are only

concerned with the average.

Theorem 10 The average minimum cost flow problem with homogeneous arc costs

for directed acyclic graphs is solvable in polynomial time P.
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Proof 12 Similar to the proof of Theorem 9, each path has the same average value,

and therefore the problem reduces to finding a feasible flow satisfying node demands.

Table 12 summarizes complexity of the average network flow variants.

Table 12. Average Network Path Length Problems

Problem Complexity Optimal Algorithm Heuristic

ASP (DAG) Polynomial Orlin’s DP Approach(O(nm)) Scaling (O(m))

ASP (Homogenous Arc Costs) Polynomial Dyskstra’s(O(n2)) ?

ASP (Positive Arc Costs) NP-Hard ? ?

ASP (General) NP-Hard ? ?

AMCF (DAG) NP-Hard ? Successive Scaling (O(Cm))

Successive DP (O(Cnm))

AMCF (Positive Arc Costs) NP-Hard ? ?

AMCF (General) NP-Hard ? ?

AMCF (Homogenous Arc Costs, DAG) Polynomial Successive DP (O(Cnm)) Successive Scaling (O(Cm))

AMCF (Homogenous Arc Costs) Polynomial Successive Dykstras (O(Cn2)) ?
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VII. Conclusions and Open Questions

7.1 Summary

We’ve motivated the need for an average network flow problem. Incorporating

value focused thinking as a cost function in the shortest path problem results in

a mulitobjective average shortest path problem; the same is true for the minimum

cost flow problem. Each of these problems were reduced from known NP-Complete

problems proving NP-Completeness for general graphs. Furthermore, polynomial

time algorithms and heuristics are possible for the average shortest and longest path

problem for directed acyclic graphs. The average minimum cost flow problem for

directed acyclic graphs is NP-Complete, but accurate efficient solutions are possible

using concepts from the algorithms for the average shortest path problem. In both of

these problems, a decision maker may need to make tradeoffs between arcs and value.

This leads to the bicriteria average shortest path and bicriteria average minimum cost

flow problem. These problems are clearly NP-complete as well. However, as is the

case for the average shortest path problem, the solutions for the bicriteria average

shortest path problem for directed acyclic graphs can be generated efficiently. For

the bicriteria average minimum cost flow problem, very accurate estimated efficient

solutions are possible using the heuristics for the average minimum cost flow problem.

7.2 Open Questions

Several areas of research could emanate from this study. An obvious follow-on

is the development of an algorithm to solve the average shortest path or average

minimum cost flow problem for graphs with cycles. Some of the principles from

minimum cost flows for cyclic graphs will be useful. Finding an algorithm to solve the

average minimum cost flow problem for directed acyclic graphs is possible, however
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obviously not a polynomial time algorithm.

Advanced sensitivity analysis of the MALP and the MAMCF to include measure

weights of the value function, arc capacities, and number of arcs utilized would be

interesting. Each change in the weights of the value function will produce a new

efficient frontier. The idea is then to observe where each of the efficient frontiers

overlap across the range of weights specified by the decision maker.

The idea of non-additive paths is a relatively recent development in the network

optimization literature. Research motivation comes from the fact that not all network

paths are additive in nature, that is a path cost may be some function other than

simply the addition of all the arcs costs. The methods were sparked by the traffic

equilibrium problem and are discussed in [40], [1], and [41]. There aren’t many

citations to these papers and extensions are possible. One idea is to compare these

non-additive algorithms with the algorithms and heuristics from this dissertation. The

average path is actually just a special case of the non-additive shortest path discussed

in [40] and [1], where the function is simply the sum of arc costs of the path divided by

the number of arcs. Because of its simple structure, we’ve shown in this dissertation

that faster solutions are attainable. A study to compare the performance of these

non-additive algorithms with our algorithms and heuristics would be beneficial.

Many other extensions potentially exist. Research on several of these is underway

and therefore are not exposed here.
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1.1 Abstract

United States Transportation Command’s (USTRANSCOM) current approach for

transportation mode selection involves countless complicated decisions, few of which

are mathematically driven. The proposed methodology combines Value Focused

Thinking and network optimization/linear programming to provide a novel strate-

gic multi-objective multi-commodity flow model suitable for use by USTRANSCOM.

A general formulation of the network and accompanying linear program along with

an example application showing the simplicity of the approach are provided. Because

of the structure of linear program, solutions can be obtained efficiently.
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1.2 Introduction

With a $120 billion annual budget, logistics in the Department of Defense is over-

whelmingly complicated [12]. Transportation costs alone total $10 billion–opportunities

for improvement with a budget of this size are countless. The joint command in charge

of this budget and responsible for all military transportation during peace and war

times is USTRANSCOM. With a direct link to the President and Secretary of De-

fense, they are an integral part of our nations warfighting capability, and are in need

of advanced modeling methods in order to accomplish their mission efficiently and

effectively.

Supply chain and logistics in the U.S. military is vitally important to the secu-

rity of our citizens. It ensures our military force is ready to protect and defend the

United States. The following quote sums up the military supply chain, ”The DoD

supply chain is a global network of DoD and commercial supply, maintenance, and

distribution activities that acquires and delivers materiel and logistic services to the

joint force globally. Its fundamental goal is to maximize force readiness while op-

timizing the allocation of limited resources” ([9], pg. I-11). Two important words

from this quote are network and optimization. USTRANSCOM’s purpose in manag-

ing the DOD’s supply chain is to build a global network and optimize the allocation

of limited resources to ensure force readiness. Yet, how many of USTRANSCOM’s

decisions are really based on mathematical optimization? Very few we suspect, even

though techniques such as network optimization could provide a quintessential mod-

eling tool for this transportation problem [1]. However, many may question the use

of optimization with such a large complicated network. For this reason, we introduce

value focused thinking (VFT) in addition to network optimization. VFT is capable

of aiding complex decisions involving many stakeholders, conflicting objectives, and

142



uncertainty ([5],[10]).

We limit the discussion to sustainment, however the framework could be easily

adapted to capture troop movements and units and equipment as well. Each sustain-

ment item, shipped from supply warehouses and bases in the U.S. to overseas bases,

are assigned different priorities from several DoD ranking systems; this a major factor

in determining its mode of transportation. These systems include the Force/Activity

Designator, Urgency of Need Designator, and the Priority Designator. For more in-

formation on these and other priority systems used see ([9], app. B). USTRANSCOM

is responsible for setting all rules, regulations and policies governing the DoD sup-

ply chain. These rules then dictate how the military executes transportation mode

selection. They are broken into four sections: Surface Deployment and Distribution

Command (SDDC) is responsible for ground transportation rules and regulations;

Military Sealift Command (MSC) governs all ocean transportation policies; AMC’s

Tanker Airlift Control Center (TACC) schedules and dictates military airlift policies;

and the commercial industry comprised of the Civilian Reserve Air Fleet (CRAF)

program with such shippers as UPS supplement military capabilities.

Using the priority rules and policies of USTRANSCOM, the four services setup

a transportation scheme through a physical network consisting of roads, railroads,

storage facilities, warehouses, ports, waterways, and pipelines. This includes capa-

bilities of military organizations and those of commercial partners as well as those

of multinational and interagency participants ([9], pp. II-1). This network setup

and priority scheme are the driving force behind the transportation mode selected

for each product. A model that incorporates these priorities, existing infrastructure,

and existing modes of transportation could be very useful. The proposed approach
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accomplishes this by looking at the value of shipping a product on each type of trans-

portation mode and assists in choosing the most valuable method of transporting a

product from one location to another. It uses optimization to maximize value to the

military while ensuring capacities and demand are met.

A review of the literature shows that articles on transportation mode selection

in the military are scarce. One thesis exists that looks at a small part of the trans-

portation process, from port in the occupied country to foxhole for army sustainment

goods [7]. In our review of the supply chain and operations management literature,

the use of value focused thinking for transportation mode selection in both civilian

and military situations has not been documented. Additionally, the multi-objective

multi-commodity flow problem developed in general methodology section is innova-

tive, mathematically consistent, and practically useful.

1.3 Value Focused Thinking and Transportation Mode Selection

Numerous approaches have been used for transportation mode selection and there-

fore measures of effectiveness are well defined in the logistics community. We know

from the literature [3] the 15 most important factors used for civilian transportation

mode selection, the top 4 being cost, speed, reliability, and product characteristics.

Cost, speed, and reliability are self explanatory, product characteristics in the mili-

tary problem turns out to be the priorities discussed above. [8] lays out the measures

used in civilian transportation mode selection, we argue these are the same factors

used in military transportation mode selection however with differences in impor-

tance. Rather than choosing a carrier and mode based solely on speed and reliability,

decision makers regularly consider cost, reputation, and other factors also noted in

[2]. How can all these factors be captured? Value-focused thinking provides a model
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to capture both tangible and intangible factors.

Value focused thinking (VFT) allows tradeoffs to be made between competing

objectives. It allows, for example, a decision maker to trade off increases in cost

for increases in speed and reliability. For instance, a decision maker may decrease

the importance of cost while increasing the importance of speed and reliability for a

high priority product. A low priority product with a specified deadline may see a de-

crease in the importance of speed while the importance of reliability and cost increase.

Value-Focused Thinking and Decision analysis seek to aid in human decision mak-

ing, not model the human decision making process. The justification for this purpose

is decision makers should desire to make rational choices given any situation. What

is the purpose of modeling inconsistent or irrational behavior? A better approach is

to build models of rational choice, and let the decision maker utilize the models in

their decision making process. Alternative focused thinking techniques, such as the

Analytic Hierarchy Process (AHP), encourage a ”best” choice among the available

alternatives; value focused thinking begins with the fundamental inputs in a decision

and reveals what is truly valued. Rather than starting with alternatives, VFT starts

with objectives and measures. Alternatives can then be generated from these mea-

sures and assigned values based on their fulfillment of the objectives. In this way,

”value gaps” between a best available alternative and an ideal alternative can be

identified, providing a decision maker with a more complete analysis of the problem

at hand.

As with any process, a list of suggested implementation procedures is useful as

well. [6] and [5] describe the steps in the VFT process rather generally, a more spe-
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cific declaration of events is given by [11]. He describes the value modeling process

in 10 essential steps. Problem identification (Step 1) is self explanatory, transporta-

tion mode selection. Creating the value hierarchy (Step 2) and developing measures

(Step 3) are covered in the transportation mode selection literature. Creating the

value function (Step 4) and weighting the hierarchy (Step 5) require time from sub-

ject matter experts. Following model construction is the generation (Step 6) and

scoring (Step 7) of alternatives through deterministic analysis (Step 8). Because of

the subjectiveness in defining values and weights, a proper sensitivity analysis (Step

9) is essential for a good analysis. Finally, conclusions and recommendations (Step

10) relate the findings back to the decision maker. See the references above for more

detailed information.

1.4 Problem Formulation

With measures and objectives for transportation mode selection already defined,

a value function can be solicited from the decision maker. Single dimension value

functions (SDVF) are normally used to capture preferences for varying levels of the

measures, assigning each level of the function a value between 0 to 1 . For an in depth

look at values and preference functions see Keeney and Raiffa [4]. For the purposes

of this paper, we simply need to know that a value function vkxk is easily captured

from a decision maker. Weights can be determined using either AHP, swing weights,

direct assessment, or group weights. Direct assessment is the most convenient; it’s

accomplished through examining the measures from an objective and weighing trade-

offs between them. The least important measure is assigned a 1, the remainder of the

measures are assigned numbers based on how much more important they are than the

least important measure. A measure that is twice as important as the least important

measure is given a value of 2, call it rk for measure k, and so on. Since the weights
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must sum to one, that is
∑
wk = 1, these values must be scaled to a decimal between

0 and 1. To determine a weight wk for measure k, take its successive rk and divide

by the sum of all the ranks, that is

wk =
rk∑
rk
. (38)

The form of the multi-objective value function then becomes

v(x) =
∑

wkvk(xk) (39)

for k = 1, 2, ..., n measures, where vk(xk) is the single dimension value function

of measure k, wk is the weight of measure k, and v(x) is the multiobjective value.

Figure 70 shows an example network formulation of a transportation problem.
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Figure 70. Example Network Formulation

We set the problem up in the context of a transportation network for USTRANSCOM.

Consider a graph G(N,E) as a directed network. The nodes i ∈ N could represent

various locations available to USTRANSCOM for shipment through, to, or from,

including bases, ports, airports, and rail stations. The edges i, j ∈ E are the connec-

tions between these nodes. These may be connected in either direction. The value

function vpi,j = wpkv
p
i,j,k defines the value (vpi,j) of shipping a product p on the trans-

portation mode from node i to j for measure k. xpi,j defines the number of pounds

of product p shipped between node i and j per year. Given this graph G(N,E), the

general minimum cost network flow problem is
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min z =
∑

(i,j)∈E

ci,j,xi,j

s.t.
∑

(i,j)∈E

xi,j −
∑

(j,i)∈E

xi,j = s(i) ∀ i ∈ N

li,j ≤ xi,j ≤ ui,j ∀ (i, j) ∈ E

(40)

where xi,j is the flow from vertex i to j, ci,j is cost of a unit of flow from i to j, li,j

is the lower bound on the flow from i to j, ui,j is the upper bound on the flow from i

to j, and s(i) is the supply or demand at node i.

The value function weight wpk of measure k is dependent on product p for each

of the legs i, j. Higher priority products will put a lower weight on cost and higher

weight on speed and reliability where a lower priority product weights cost much

higher, and speed and reliability lower. The cost value functions vpi,j,k will also be

variable for each product p, with higher priority items valuing lower costs less, and

speed and reliability higher. The capacity of each node is Ci,j while the supply or

demand in and out of node is denoted sp(i). These are discussed further in the next

section where a linear program to solve the network in Figure 70 is given.

1.5 General Methodology

This section develops a general methodology synthesizing value focused thinking

and the minimum cost network optimization problem. The minimum cost problem

now transforms into a maximum value network optimization problem, where the de-

cision maker is maximizing value while meeting demand and staying within capacity.
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This formulation can be used to solve the network in Figure 70. Combining the value

function with the general network formulation and accounting for multicommodities

between nodes gives the following linear program:

max z =
m∑
p=1

∑
(i,j)∈E

(
l∑

k=1

wpkv
p
i,j,k

)
xpi,j

s.t.
∑

(i,j)∈E

xpi,j −
∑

(j,i)∈E

xpi,j = sp(i) ∀ i ∈ N, p = 1, ...,m

m∑
p=1

∑
(i,j)∈E

xpi,j ≤ Ci,j ∀ i, j ∈ E

xpi,j ≥ 0 ∀ i, j ∈ E

(41)

where wpk is the weight of measure k for product p, vpi,j,k is the value function defined

for product p at measure k between nodes i and j, sp(i) is the supply or demand

of product p entering or leaving the node i, and Ci,j denotes the capacity of the

transportation mode between node i and j. Note, when viewing the problem from a

strategic lens, the capacities and supply/demand represent the yearly volume. Solving

the network in Figure 70 with the linear program in Equation 52 is computationally

efficient as well since the network flow problem is known to be totally unimodular

when formulated as in Equation 40 and 52.

1.6 Conclusions

USTRANSCOM’s current process for transportation mode selection can be im-

proved by using this approach. The proposed methodology is both robust and novel,

creating a mathematically defendable model for transporting military sustainment
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goods. Although demonstrated at the strategic level in this paper, the methodology

could easily adapt to assist with decisions at the tactical level, as well as capture any

other constraints that may be needed (ie. shipping time, costs, etc). Additionally,

the value function can capture any other variables deemed important to the decision.

In summary, any factor or thought process influential in the military transportation

mode selection decision could be incorporated into this model, and solutions, even

with large transportation networks, are computationally tractable.
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Abstract

Transportation mode selection decisions are becoming increasingly difficult as supply

chains expand and the transportation domain adapts. In order to handle these grow-

ing complexities, we combine network optimization, multiobjective programming, and

multiobjective decision analysis. Specifically, we define Multiobjective decision pro-

gramming from multiobjective programming and multiobjective decision analysis and

apply it to the multiobjective minimum cost network flow problem. The result is a

more accurate representation of the transportation mode selection decision environ-

ment, and a unique methodology applicable to a variety of problems.
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Selection

1. Introduction

Interest in transportation mode selection is increasing as the world becomes more

interconnected and supply chains expand globally. Operations research techniques are

becoming more popular in logistics, yet much work is still needed. Modeling tradeoffs

between cost, speed, and reliability functions is especially important and is typically

accomplished through Multiobjective programming (MOP), but other intangible fac-

tors exist as well. These intangible factors, such as perceived quality of customer

service, shipment tracking capabilities, and long-term partnership potential [1] for in-

stance, are best captured using Multiobjective decision analysis (MODA), specifically

utility or value functions. The general methodology developed hereafter was moti-

vated by attempts to model the transportation mode selection problem in its entirety.

In this paper, we merge MOP and MODA and define Multiobjective Decision

Programming (MODP). The concept of combining a multiobjective programming

problem with an additive utility or value function is not new [2-5], we are simply

offering a formal definition of a methodology used sparingly in the literature in hopes

of spurring future research in this fertile area. In addition to a formal definition,

the literature is missing the application of value focused thinking (VFT) [6-8] as a

means of soliciting the required information from the decision maker. VFT assists the

decision maker in uncovering the value each alternative provides through determin-

ing what the decision makers values in the decision. This is accomplished through

a logical breakdown of the problem into objectives and measures. We provide the

VFT model. Finally, we apply MODP to a network optimization problem and create
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a formulation not yet discussed in the literature.

Due to the inherent structure present in transportation problems, a minimum cost

flow (MCF) optimization model best captures the dynamics of the system. Account-

ing for multiple objectives in the MCF problem allows us to capture the conflicting

criteria present in transportation planning problems, we denote the multiple objective

minimum cost flow problem MMCF. Combining this with MOP and MODA creates

a unique methodology we call Multiobjective decision programming (MODP) for the

multiobjective minimum cost flow (MMCF) problem, filling a gap in the literature.

Hamacher et al [47] present a review of the MMCF including theory and algorithms

for solving; their all inclusive reference list doesn’t include any papers formulating

this problem. Furthermore, very few authors have combined MOP and MCF, al-

though transportation planning frequently requires multiple objective functions such

as minimizing cost, minimizing arrival time, minimizing deterioration of goods, and

maximizing safety [47].

Applying MODP to the MMCF allows us to convert multiple linear objective

functions into a single objective function, capturing any qualitative and quantitative

factors or objective functions needed, while maximizing value to the decision maker

in a network environment. As with typical multiobjective programming, determin-

ing the efficient frontier allows a decision maker to examine tradeoffs and make good

choices among pareto optimal solutions. However, it becomes difficult to choose which

solution is best within this efficient frontier, this is where MODA comes in. Of par-

ticular interest to decision makers is the value of their decisions. How much value

does a decision contribute based on their specific utility or value function? The idea

is then to determine the value each of the objective functions is contributing to the
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overall decision. This in turn shrinks the size of our efficient frontier to consider only

tradeoffs that add value to the decision. The next section gives a background and

further motivation for the problem. Section 3 defines our methodology and Section 4

discusses implications of the proposed application to the transportation mode selec-

tion problem.

2. Background

The transportation problem was initially formulated by Hitchcock in 1941 [10].

The transportation problem is simply a special case of the minimum cost network flow

problem where goods are shipped only from a finite number of origins to some num-

ber of destinations. This is not an accurate representation of today’s transportation

environment. The minimum cost network flow problem, on the other hand, allows

goods to flow through intermediate nodes. In addition, most problems involve mul-

tiple competing objectives, see [47] for a summary of the multiobjective minimum

cost network flow literature. Research in the area of Multiobjective programming, in

general, flourished in the 70’s and 80’s, a few papers use additive value models to as-

sign preferences to objective functions, see [2] for an example. An excellent resource

for research on network optimization for transportation in general is given in [11].

The rest of this section presents background from each of the methodology’s being

combined.

2.1 Multiobjective Programming

Multiobjective programming is a popular operations research tool and several

good textbooks exist, see [35, 13] for MOP theory and further detail of the material

presented in this section. Generally, when solving multiobjective programming (or

multicriteria optimization) problems, unique optimal solutions are unattainable. In-

156



stead, a decision maker must choose between multiple optimal solutions. These pareto

optimal or efficient solutions occur when an increase in one objective function yields

a certain decrease in another objective function. Recall the general multiobjective

program:

min(f1(x), ..., fk(x))

st gc(x) ≤ 0

(42)

for c = 1, 2, ...,m constraints and k objective functions.

Definition 7 A feasible solution x̂ ∈ X is called efficient or pareto optimal if there

is no other x ∈ X such that f(x) ≤ f(x̂). If x̂ is efficient, f(x̂) is called a non-

dominated point. The set of all efficient solutions x̂ ∈ X is denoted XE and is called

the efficient set.

Since a decision maker must ultimately choose one solution to the problem, the

research in MOP is primarily concerned with generating the efficient frontier XE and

choosing the best solutions from XE. This can be done in a number of ways. Scalar-

ization techniques are one such method that generate good solutions by: assigning

some weight λk to each function in formulation 42(Weighted sum method); convert-

ing or relaxing the objective functions into constraints (epsilon constraint method,

elastic constraint method, Benson’s method); or by minimizing distances from some

desired reference point (Compromise programming, Achievement function method).

In each of these, the idea is to get as close as possible to the decision makers’ pre-

ferred decision without knowledge of his preference function. Why? The argument

from Steuer [13] and others is the decision makers preference function is rarely known.
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If it was, there would be no need for MCO techniques. Wouldn’t a better method be

to attempt to collect the function, and spend time with the sensitivity analysis? The

next section presents the additive value function of value-focused thinking, an ideal

method for gathering a decision makers preference function.

2.2 Multiobjective Decision Analysis

Multiobjective Decision Analysis (MODA) is referred to as ”a set of quantita-

tive methods for analyzing decisions based on the axioms of consistent choice” [14].

That is, DA is used to make rational decisions. Value Focused Thinking is one such

technique, it’s the process of understanding what is valued in a decision. As Keeney

states, ”Values are what we care about. As such, value should be the driving force

for our decision making” [7]. In order to do this, we need to know the measures im-

portant to the decision maker, how the decision maker values levels of the measures,

and the weights of each of these measures on the overall decision.

The general additive value model is given by:

vj(x) =

n,m∑
i=1,j=1

wivi(xij) (43)

for i = 1, 2, ..., n measures and j = 1, 2, ...,m alternatives, where vi(xij) is the sin-

gle dimension value function of measure i evaluated for alternative j, wi is the weight

of measure i, and vj(x) is the multiobjective value for alternative j. The objective

is to maximize value over the j alternatives. The value of a particular alternative j,

or vj(x), is simply the value of an alternative in relation to what is important to the

decision. A vj(x) = 1 is indicative of an alternative that achieves everything desired

in a decision, whereas vj(x) = 0 indicates an alternative achieving no value in the
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decision. What VFT contributes is the value of an alternative, both in relation to

what is valued in the decision and in relation to the other alternatives.

Several methods can be used to determine wi for each of the measures, direct

assessment being the most straightforward. More involved decision maker input is

needed for vi(xij). The exponential and piecewise linear SDVF’s are equipped to han-

dle preferences on a continuous or discrete scale and are easy to explain to a decision

maker. Initially, both high and low levels are needed and given a value of 1 and

0, respectively. For instance, in transportation mode selection lower lead times are

normally desired. It may be the case that that 4 days has the same value as 3 days

or 2 days. In this case, any lead time less than 4 days receives a value of 1, increased

performance in lead time is not beneficial.

For a monotonically increasing measure, the continuous exponential function is

vi(xi) =


1−e−(xi−xL)/ρ

1−e−(xH−xL)/ρ ρ 6= Infinity;

xi−xL
xH−xL

, otherwise.
(44)

where xH is the most preferred level (assigned a value of 1), xL is the least pre-

ferred level (assigned a value of 0), xi is the level of the ith measure, ρ is an unknown

parameter, and vi(xi) is the value of the ith measure at level xi.

VFT is a powerful methodology able to model rational decisions, yet several as-

sumptions accompany the application of the additive value model, see chapter nine of

[8]. Ignoring these assumptions can lead to a poor model, see [15] for common pitfalls

in value modeling. With the MOP and MODA methodology defined, we transition

to network optimization in the next section.
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2.3 Multiobjective Minimum Cost Flow

Network optimization is a well established OR methodology and is applicable to

a variety of problems, see [16] for theory of networks. One highly studied network

model is the minimum cost flow problems, a connected directed graph. The MCF

is directed in that flow is directed from one node to another node and connected

because a path exists between every node. The MCF allows a cost to be associated

with each arc, and bounds to be set on the flow between nodes. By minimizing cost,

the MCF prevents cycles by shipping goods through the network via the minimum

cost route. Because of these reasons and its competing objectives, the transportation

environment is best modeled through an MCF.

Consider a graph G(N,E) as a directed network. The nodes i ∈ N could represent

various locations available for shipment through, to, or from, including bases, ports,

airports, and rail stations. The edges i, j ∈ E are the connections between these

nodes. These may be connected in either direction. Given this graph G(N,E), the

general minimum cost network flow (MCF) problem is

min z =
∑

(i,j)∈E

ci,j,xi,j

s.t.
∑

(i,j)∈E

xi,j −
∑

(j,i)∈E

xi,j = s(i) ∀ i ∈ N

li,j ≤ xi,j ≤ ui,j ∀ (i, j) ∈ E

(45)

where xi,j is the flow from vertex i to j, ci,j is the cost of a unit of flow from i
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to j, li,j is the lower bound on the flow from i to j, ui,j is the upper bound on the

flow from i to j, and s(i) is the supply or demand at node i. Converting this to

a multiple criteria optimization problem gives the multiple objective minimum cost

flow (MMCF) problem

min z1 =
∑

(i,j)∈E

c1i,jxi,j

min z2 =
∑

(i,j)∈E

c2i,jxi,j

...

min zp =
∑

(i,j)∈E

cpi,jxi,j

s.t.
∑

(i,j)∈E

xi,j −
∑

(j,i)∈E

xi,j = s(i) ∀ i ∈ N

li,j ≤ xi,j ≤ ui,j ∀ (i, j) ∈ E

(46)

for k = 1, 2, ..., p objective functions. The idea with Formulation 46 is to search for

efficient solutions within the context of the minimum cost network flow problem. The

question becomes what is the best method to obtain cki,j for each of the objectives?

Consequently, the additive value model in Equation 50 allows the decision maker to

make tradeoffs between objectives and solutions, and define the ci,j based on objec-

tives valued in the decision. This contribution is motivated in the next section.

2.4 Motivation for the Methodology

As alluded to earlier, we use the additive value model from VFT as a scalarization

technique for the MOP, different from those discussed in Section 2.1. MODP is unique
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in that each objective function remains an objective function, unlike the constraint

methods, but the entire efficient frontier need not be generated, as in the weighted

sum method. MODP is similar to the reference point methods because solutions are

compared to an ideal point, however the MODP ideal point is related to the decision

maker’s value function and may actually be achievable unlike the ideal point of the

MOP. It may deviate from the efficient frontier of the MOP as well. Research in this

area began with Keeney and Raiffa [6] and is summarized in [2], but has spread into

several other literature streams.

Multicriteria Decision Making (MCDM) and Multiattribute Utility Theory (MAUT)

are two neighboring disciplines to MODA and MOP. DA is distinct from these in that

it ”is normative, rather than descriptive. That is, it provides a systematic quantita-

tive approach to making better decisions, rather than a description of how unaided

decisions are made”[14]. Nevertheless, MCDM and MAUT contribute important re-

search in the area of decision maker preferences and multiobjective optimization. The

majority of the research with decision makers deals with interactive algorithms, that

is, defining the efficient frontier and working with the decision maker to determine

their preferred efficient solution. In fact, in Wallenius et al [17], the authors state

”In multiple criteria optimization, there is usually no attempt to capture the deci-

sion maker’s utility or value function mathematically. Instead, the philosophy is to

iteratively elicit and use implicit information about the decision maker’s preferences

to help steer the decision maker to her or his most preferred solution”. This implies

MODA is not a widely accepted technique used with multicriteria optimization, our

argument is it should be. MODA appears to be the best approach for strategic deci-

sions such as those faced in the logistics literature.
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According to Wallenious [17], the philosophy of multicriteria optimization is to

model the decision makers preferences. This objective is different than MODA.

MODA attempts to model what a decision maker hopes to achieve by making the

decision, and shows how well potential solutions meet their objectives. Attempting

to capture a decision makers value function and learning what the decision maker

values is just as important as defining the actual value function. After a reasonable

value function is decided on, sensitivity analysis can be used to find an acceptable

range. This bounds the efficient frontier. Most decision makers can provide a range

on the wi’s and vi’s in Equation 50.

Hamacher’s review paper on the multiple objective minimum cost flow problem

[47] discusses exact and approximate algorithms to solve both the continuous and

integer MMCF. In the paper, they state ”We found no papers on an exact solution

method for MMCF with more than two objectives”. The methodology in the next

section does just that.

3. Methodology Development

We develop the general multiobjective decision programming (MODP) formula-

tion and then show a specific application of MODP to the multicriteria minimum cost

flow (MMCF) problem. The MODP formulation is a general union of multiobjective

programming (MOP) and multiobjective decision analysis (MODA). Obviously, mul-

tiobjective linear programming (MOLP) is a special case of MOP, so we would call

MODP for linear programming multiobjective linear decision programming MOLDP.

Since the MMCF is a special case of the MOLP, the application would actually fall

under MOLDP, but we stick with the term MODP to limit the new terms presented.
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3.1 MODP

As discussed in Section 2.4, VFT can be used as a scalarization technique that

measures the value each of the objective functions contributes to the overall decision

in a multicriteria optimization problem. So using the objective functions from the

MOP in Equation 42 as measures in the additive value model from Equation 50 gives

a new VFT formulation:

vj(x) =

m,p∑
j=1,k=1

wkvk(fk(xk,j)), (47)

for k = 1, 2, ..., p objective functions where we are seeking to maximize value

over all j alternatives. Thus, vj(x) is the value of the jth alternative, and the highest

valued alternative is preferred. fk(xk,j) can be a linear, non-linear, or integer objective

function. This is the beauty of the additive value model, all functions are transformed

into one function scaled between 0 and 1. The objective functions now have the form:

max w1v1(f1(x))

max w2v2(f2(x))

...

max wpvp(fp(x))

Thus the multiobjective decision programming problem (MODP) now becomes

max vj(x) =

i,j,k∑
n,m,p

wivi(fk(x))

s.t.gc(x) ≤ 0

(48)

for k = 1, 2, ..., p objective functions, i = 1, 2, ..., n measures, j = 1, 2, ...,m alter-
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natives, and c = 1, 2, ..., l constraints. We seek to maximize value over all objective

functions, measures, and alternatives while satisfying the constraints.

Reiterating, this will tell us how good our solution to the multicriteria optimiza-

tion problem really is, how much value it’s obtaining. It may be the case that the

optimal solution to MODP is not a good solution. Because LP’s are prescriptive in

nature, they sometimes yield solutions that are impractical from an implementation

standpoint as well. This is where the VFT model comes in. The value model is nor-

mative in that it provides an ideal solution by which alternatives can be compared.

Each pareto optimal solution is gauged against the decision makers values, and the

best efficient solutions are realized. This general formulation is capable of handling

non-linear, linear, or integer objective functions, which could consist of one or more

variables. Solving Equation 48 allows the definition of valuable alternatives within

the efficient frontier. Next, MODP is applied to the MMCF, which is a special case

of the MOLP and MOP.

3.2 MODP applied to MMCF

Applying MODP to the MMCF problem in Formulation 46 by replacing the con-

stant cki,j with values vk of functions fk(∗), where fk(∗) is the kth cost function of a

unit of flow from i to j, gives
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min z1 = −w1

∑
(i,j)∈E

v1 (f1(∗))xi,j

min z2 = −w2

∑
(i,j)∈E

v2 (f2(∗))xi,j

...

min zp = −wp
∑

(i,j)∈E

vp (fp(∗))xi,j

s.t.
∑

(i,j)∈E

xi,j −
∑

(j,i)∈E

xi,j = s(i) ∀ i ∈ N

li,j ≤ xi,j ≤ ui,j ∀ (i, j) ∈ E

bk ≤ fk ≤ hk ∀ (i, j) ∈ E

(49)

for k = 1, 2, ..., p objective functions and where xi,j is the flow from vertex i to j,

li,j is the lower bound on the flow from i to j, ui,j is the upper bound on the flow

from i to j, s(i) is the supply or demand at node i, bk is the lower bound on fk for

the kth objective function from node i to j, and hk is the upper bound on fk for

the kth objective function from node i to j. bk and hk will depend on the variable

settings of fk available at each arc for each function. Reiterating, the negative value

is being minimized, which is essentially maximizing value in the same way VFT cur-

rently operates. The objective function maximizes value over each of the objective

functions for each of the arcs. For example, 49 may minimize cost, maximize speed,

and maximize reliability for the sum of all arcs. The value each of these objectives

contributes to the decision is maximized, while the arcs capacities and supply and

demand are satisfied.
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Since the idea is to maximize value, the multiobjective minimum cost flow problem

is to minimize negative value. In practice, the functions fk could be linear, non-linear,

or integer. Because the MMCF seeks to minimize costs over the entire network, trade-

offs between these functions are calculated prior to the calculation of xi,j. Therefore,

even if fk are non-linear, the linear MMCF structure holds and standard linear pro-

gramming can be used to solve Formulation 49. The xi,j simply changes the function

by some magnitude.

Since the MMCF in Formulation 49 is a special case of the MOLP, we know the

solution is an efficient solution from the following theorem [35],

Theorem 11 Let x̂ ∈ X be an optimal solution of the weighted sum LP.

1. If λ ≥ 0 then x̂ is weakly efficient.

2. If λ > 0 then x̂ is efficient.

Therefore, any value function with a weight wi ≥ 0 yields an efficient solution.

However, there may be several ways to achieve this optimal solution. Solving For-

mulation 49 may result in several values of xi,j yielding the same overall value vj.

Formulation 49 is applicable to a variety of network problems, the next section pro-

vides details of its application to the transportation mode selection problem.

4 Discussion of the Application to Transportation Mode Se-

lection

Many multiobjective programming articles have minimized cost or both cost and

time [18, 19] for the MMCF problem. However, this doesn’t consider other factors

used in transportation mode selection such as reliability, company quality, and other

intangible factors. This is why we’ve proposed the use of value-focused thinking with

167



multicriteria optimization. Both qualitative factors and quantitative factors with lin-

ear, non-linear, or integer objective functions can be accounted for. In their 2008

review of the transportation mode choice literature, Meixall and Norbis [20] discuss

the need for a normative decision making model, MODP for MMCF provides this.

Since the MODP for MMCF reduces the number of objective functions to 1, the com-

plexity of solving the multicriteria optimization problem is reduced as well. Rather

than choosing one of an infinite number of solutions on the efficient frontier, the

decision maker is able to measure the solutions against his best valued option. In

this way, several good solutions can be extracted from the MOP efficient frontier, or

possibly from outside the MOP efficient frontier. The MODP efficient frontier may

be completely different than the MOP efficient frontier.

Defining the variables in Formulation 49 is straightforward. From the literature,

the measures affecting the decision makers transportation choice are well known, see

Dobie or Cullinane and Toy [21, 22]. The approximate weights wi of cost, lead time,

variability, etc. are known as well, however each company’s actual weights will vary

slightly. The value functions vk of the functions fk are dependent on the decision

maker, the goods being shipped, and the goals of the company. These are captured

using the model in Section 2.2 and techniques from [7, 8]. The flow, xi,j, could rep-

resent either pounds or twenty-foot equivalent units (TEU) shipped.

It can be shown that if the supply s(i) and the flow limits li,j, ui,j are integer

values, the extreme points of the polyhedra defining the objective space will be an

integer vector, meaning xi,j will be integer. For transportation, this means the opti-

mal solution is in TEU’s shipped via each arc. If there is a need to define fractional

values, this simply results in a less than container load shipment. Upper and lower
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limits on xi,j and fk come from available transportation options on each arc i, j of

the network and are dependent on the modes, times, and capacity available. As with

any programming problem, a proper sensitivity analysis on the weights given by the

value model ensures the implemented solutions are as robust as possible.

5. Conclusions

Modeling the transportation mode selection decision process is a challenging prob-

lem. There now exists a methodology for accurately modeling this important deci-

sion, multiobjective decision programming for the multiobjective minimum cost flow

network. MODP combines multiobjective programming and multiobjective decision

analysis to provide a flexible methodological approach to solving the multiobjective

optimization problem. Applying multiobjective decision programming to the multiob-

jective minimum cost flow network problem provides a unique methodology to make

tradeoffs among competing objectives in a network environment. Initially, utilizing

VFT methodology, a decision maker defines the objective functions most important

to the transportation selection decision. Next, he models the transportation environ-

ment using the minimum cost network flow problem. Finally, using the multiobjective

minimum cost network flow problem and multiobjective decision programming, a so-

lution is generated. This solution is compared against what is truly valued in the

decision, and the overall value of the solution is calculated. This paper fills a gap in

the multiobjective programming and multiobjective minimum cost flow literature and

gives the transportation selection decision maker a powerful decision support tool.
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Abstract

The military transportation environment is becoming increasingly complex. United

States Transportation Command (USTRANSCOM) therefore requires advanced meth-

ods to assist with transportation mode selection. Combining value focused thinking

and network optimization, we create a unique formulation called the multiobjective

average shortest path (MASP) problem. An algorithm that solves to optimality is

provided and its benefits are discussed. We then present a faster heuristic and exam-

ine its performance under a variety of conditions. In addition, it may not be feasible

to simply optimize multiobjective value and ignore the path length. Therefore, a mul-

ticriteria optimization problem is formulated and solved that allows tradeoffs between

path length and value. Pareto optimal solutions are generated and compared.

Keywords

Operations research, Network Optimization, Decision Analysis

3.1 Introduction

As the military continues to drawdown forces and reduce budgets, attention to

transportation costs is increasing. With a $120 billion annual budget, logistics in the

Department of Defense is extremely complicated [102]. Transportation costs alone

exceed $10 billion and therefore opportunities for improvement must be exploited.

The joint command in charge of this budget and responsible for all military trans-

portation during peace and war times is USTRANSCOM. The methodology in this
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paper is directly applicable to their practices and has the potential to save valuable

resources.

The idea is to combine Multiobjective decision analysis [60] and network optimiza-

tion [3] to create a stronger methodology for general use by a variety of practitioners.

Specifically, we use multiobjective values obtained from Value Focused Thinking [61]

as arc costs in the shortest path problem. This creates the multiobjective average

shortest path (MASP) problem. The power of the MASP lies in its ability to capture

multiple quantitative and qualitative factors in a network environment and gener-

ate solutions without the use of complicated multicriteria optimization procedures.

In fact, we know the use of multicriteria optimization [35] for network problems is

NP-hard for more than 3 factors [47].

Additionally, the MASP cannot be solved using existing shortest path algorithms

because of the MASP’s non-additive objective function. Therefore, two new methods

are introduced. Given a graph G with N nodes and V vertices, the first method

solves the MASP to optimality in O(N2 +N) = O(N2) running time. The algorithm

uses a dynamic programming approach to generate the shortest path to each node

for every possible sized path and divides this by the path size to obtain the shortest

average path. The second method estimates the best average path through scaling

each of the network arcs. This linear time heuristic solves in O(V ) + O(V ) = O(V ).

3.2 Background and Formulations

A short background on multiobjective decision analysis and the shortest path

problem is given. We give the necessary equations and then combine the two method-

ologies to create the multiobjective average shortest path problem.
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3.2.1 Multiobjective Decision Analysis.

Value Focused Thinking is a very popular multiobjective decision analysis tech-

nique; understanding what is valued in a decision is important. As Keeney states,

”Values are what we care about. As such, value should be the driving force for our

decision making” [61]. In order to do this, we need to know the measures important

to the decision maker, how the decision maker values levels of the measures, and the

weights of each of these measures on the overall decision.

The general additive value model is given by:

vj(x) =

n,m∑
i=1,j=1

wivi(xij) (50)

for i = 1, 2, ..., n measures and j = 1, 2, ...,m alternatives, where vi(xij) is the sin-

gle dimension value function of measure i evaluated for alternative j, wi is the weight

of measure i, and vj(x) is the multiobjective value for alternative j. The objective

is to maximize value over the j alternatives. The value of a particular alternative j,

or vj(x), is simply the value of an alternative in relation to what is important to the

decision. A vj(x) = 1 is indicative of an alternative that achieves everything desired

in a decision, whereas vj(x) = 0 indicates an alternative achieving no value in the

decision. For more detailed information on this, see [61, 60, 65]. Alternatively, an-

other popular multiobjective technique is the analytic hierarchy process (AHP). The

AHP function could easily be substituted for the VFT function in this methodology

if desired.
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3.2.2 Shortest Path Problem.

Assume a graph G = (V,A) to be a directed acyclic graph (DAG) with |V | = n

vertices and |A| = m arcs. Each arc (i, j) ∈ A has some cost ci,j and flow xi,j associ-

ated with its use. The source and sink vertices are designated s and t, respectively.

Then the general shortest path problem is:

min z =
∑

(i,j)∈E

ci,jxi,j

s.t.
∑

(i,j)∈E

xi,j −
∑

(j,i)∈E

xi,j =


1, if i=s;

−1, if i=t;

0, otherwise∀i

xi,j ≥ 0 ∀ (i, j) ∈ E

(51)

where xi,j is the flow from vertex i to j and ci,j is the cost of a unit of flow from i to

j. This is easily solved using the simplex method or any other LP algorithm. However,

since it maintains a unique structure, faster algorithms are available. Furthermore,

because we specified the network to be a directed acyclic graph, linear time algorithms

are available to solve to optimality. Dijkstra’s algorithm [3] is the most common

shortest path algorithm and solves in O(N2). This algorithm solves any shortest path

problem, not just DAG’s. An often overlooked dynamic programming algorithm that

solves the DAG in linear time O(V ) is called the Reaching Method. It begins with a

topological sort of the nodes and labels each vertex successively.

Step 1: Topologically order the DAG G

Step 2: For i = 1, ..., N , set dist(i)=0
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Step 3: For i = 1, ..., N − 1, for each edge V (i), u outgoing from V (i), if dist(Vi) +

G(Vi, u) > dist(u), then set dist(u) = dist(Vi) + G(Vi, u)

Step 4: dist(N) is the shortest path to N

The algorithm above is easily changed to gather the longest path to every node

rather than the shortest path. This is the underlying dynamic programming approach

behind the proposed heuristic.

3.2.3 MASP Formulation.

Combining the shortest path problem with the additive value model results in a

unique formulation. Simply substituting the ci,j in Formulation 51 with the vj(x)

in Equation 50 ignores the fact that we are seeking to find the best average value

through the network. Such a substitution simply results in a longest path rather

than a highest average. Therefore, the multiobjective average shortest path (MASP)

problem is:
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max z =

∑
(i,j)∈E

(
l∑

k=1

wkvi,j,k

)
xi,j∑

yi,j

s.t.
∑

(i,j)∈E

xi,j −
∑

(j,i)∈E

xj,i =


1, if i=s;

−1, if i=t;

0, otherwise.

xi,j ≤ yi,j ∀ i, j ∈ E

xi,j ≥ 0 ∀ i, j ∈ E
l∑

k=1

wk = 1 (52)

yi,j ∈ {0, 1} (53)

(54)

where wk is weight of measure k, vi,j,k is the value function at measure k between

nodes i and j, and xi,j is the flow from vertex i to j. Solution methods for the MASP

are given in Section 3.3.

3.2.4 A Multicriteria Multiobjective Average Shortest Path Problem.

Even with optimal algorithms, normal average shortest path algorithms may add

arcs to increase the overall average. However, in some applications such as trans-

portation mode selection, adding on arcs may cause unseen problems. Increased

handling normally results in increased costs, increased damage/loss, and increased

chance of mistakes. The multiobjective optimization 55 for the MASP allows the de-

cision maker to tradeoff value with additional arcs in the network path by generating

all pareto optimal solutions. Because multiple objectives are handled by the additive

value model, the problem remains a bi-objective multicriteria optimization problem,
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the first criteria being the value model and the second the number of arcs in the so-

lution path. This is important because including more than three criteria makes the

problem intractable as noted above. The multicriteria multiobjective average shortest

path problem is

min z = λ1

 ∑
(i,j)∈E

vi,jxi,j

+ λ2
∑

yi,j

s.t.
∑

(i,j)∈E

xi,j −
∑

(j,i)∈E

xi,j =


1, if i=s;

−1, if i=t;

0, otherwise.∑
λk = 1

xi,j ≤ yi,j ∀ i, j ∈ E

xi,j ≥ 0 ∀ (i, j) ∈ E

yi,j ∈ {0, 1} (55)

(56)

where xi,j is the flow between node i and j (1 in the shortest path problem),

vi,j(x) is the multiobjective value of using node i and j, and λk is the multicriteria

weight of criteria k. The formal multicriteria approach this resembles is the weighted

sum problem [35]. This problem generates and allows us to obtain efficient solutions,

also referred to as pareto optimal solutions. Taken together, this group of solutions

comprises the efficient frontier. A single solution that simultaneously optimizes both

variables is not attainable. The decision maker must make tradeoffs between pareto

solutions along the pareto front. An increase in one variable yields a certain decrease

in another. This problem is easily solved using data gathered from the application of
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the average shortest path algorithms. We discuss in section 3.4.2.

3.3 MASP Solution Methods

Three methods are available to solve the MASP. The first solution method, Wimer’s

algorithm [108], solves to optimality in O(N3); the method and algorithm are sum-

marized in this section. The second solution method uses a dynamic programming

approach similar to Wimer’s algorithm, but solves in O(N2). The final solution

method is a heuristic that utilizes the dynamic programming reaching method twice,

and therefore runs in O(V) + O(V) = O(V) linear time.

3.3.1 Wimer’s Algorithm.

[108] lays out the foundation for determining the optimal average path length

through the path length minimization algorithm. This algorithm pursues the optimal

path by determining the best average path of cardinality j at each node. First, each

vertex is assigned a rank according to its maximum cardinality (number of arcs) of a

path from s to the vertex. The source, s, is obviously assigned a rank of 0 and the

sink, t has the highest rank. Vertices are numbered according to their rank, starting

with s, and numbering vertices with equal ranks arbitrarily. So, s is numbered 1, t

is numbered |U | and for every arc e(u, v) the vertex u is assigned a smaller number

than the vertex v.

Define G = (U,E). Let u be a vertex on some path from source s to sink t. Only

the shortest path with cardinality j can be part of the shortest average arc length

path from s to t. Each vertex u ∈ U is next assigned a vector L(u) of length |U |. The

jth element of L(u), Lj(u) with (0 ≤ j ≤ |U |−1), is the minimum length of any path

from s to u with cardinality j. Πj(u) denotes the minimum length path or paths.

Since G(U,E) is acyclic, the cardinality of a path cannot be greater than |U | − 1. If
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no path exists for a cardinality, the path is assigned ∞. Another vector Pu of length

|U | is associated with u, whose jth element Pj(u) is the last vertex preceding u on

Πj(u). This is the vertex v for which Lj−1(v) + l(e(v, u)) = Lj(u). If Lj(u) = ∞,

then Pj(u) = 0

Starting at s, a new vertex is marked at each iteration until t is reached. Once

a vertex u is labeled, the length of the shortest path from s to u is known for every

cardinality between 0 and |U | − 1. The sets of arcs entering and leaving u ∈ U are

denoted Γin(u) and Γout(u). The algorithm is as follows:

Step 0: Initialization. Set L0(s) = 0 and Lj(s) = ∞, 1 ≤ j ≤ |U | − 1. Mark s

and set T = U − {s}. For every u ∈ T set Lj(u) = ∞, 0 ≤ j ≤ |U | − 1. For every

u ∈ U define Pj(u) = ∅, 0 ≤ j ≤ |U | − 1.

Step 1: New Vertex Selection. Find a vertex u ∈ T for which all the tail vertices

of the arcs in Γin(u) are already marked. Such a vertex must exist since G(E,U) is

an acyclic digraph with a single source and a single sink whose vertices are numbered

as described above.

Step 2: Updating the minimum path lengths. Determine the shortest path length

vector Lu by considering every vertex v for which e(v, u) ∈ Γin(u) as follows.

Lj(u) = min{Lj−1(v) + l(e(v, u))|e(v, u) ∈ Γin(u)}, 1 ≤ j ≤ |U | − 1. (57)

Let v∗ be the vertex obtained when solving Equation 57 for given u and j. Then, set

Pj(u) = v∗.

Step 3: Updating the set of marked vertices. Mark u and set T = T − {u}.

Step 4: Termination Test. If u = t then go to Step 5, else go to Step 1.

Step 5: Retrieving the minimum average arc length path. Upon termination, ev-

ery Lj(t) ≤ ∞ is the length of the shortest path from s to t among all the paths of
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cardinality j. For every j satisfying Lj(t) = ∞ there exists no path of cardinality j

from s to t. Evidently, min{Lj(t)/j|1 ≤ j ≤ |U | − 1 yields the minimum average arc

length for any path from s to t. Let j∗ be the cardinality of the path for which the

minimum average arc length was obtained. Then, the desired path is retrieved by

traversing backwards from t to s as follows. We start from t and go backwards to the

vertex stored in pj∗(t). We then go backwards to the vertex stored in Pj∗−1[Pj∗(t)]

and continue in the same manner until s is reached.

3.3.2 Optimal Algorithm.

Dynamic programming is an optimization technique that breaks a problem into

multiple smaller problems in order to obtain solutions more efficiently. The average

shortest path problem for a directed acyclic graph can also be solved using a dynamic

programming approach (J.B. Orlin, personal communication, November 16, 2011).

”Assuming you are finding a shortest path from node s to node t, you can let d(j, k)

be the shortest path from node s to node j with exactly k arcs. (This does not work

in networks with cycles because it actually computes the shortest walk from s to j

with k arcs.) The values of d( , ) can be computed using dynamic programming. The

shortest average length of a path from s to t is min d(t, k)/k for k = 2 to n-1. The

same technique computes a shortest average path from node s to each other node.”

The algorithm is easily coded for a maximum average shortest path. Preliminary

results are provided in Section 3.4.2.

3.3.3 Scaling Heuristic.

Following the methodology of [108], we first assign each vertex according to its

maximum cardinality (number of arcs) of a path from s to the vertex. The source,
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s, is obviously assigned a rank of 0 and the sink, t has the highest rank. Vertices are

numbered according to their rank, starting with s, and numbering vertices with equal

ranks arbitrarily. So, s is numbered 1, t is numbered |U | and for every arc e(u, v) the

vertex u is assigned a smaller number than the vertex v. Let the rank of a particular

node be denoted R(j). Hence ci,j, the cost of a unit of flow from i to j, need only be

scaled by

R(j)−R(i)

R(t)
. (58)

Let

c∗i,j = ci,j

(
R(j)−R(i)

R(t)

)
, (59)

the average shortest path problem becomes

min z =
∑

(i,j)∈E

c∗i,jxi,j

s.t.
∑

(i,j)∈E

xi,j −
∑

(j,i)∈E

xi,j =


1, if i=s;

−1, if i=t;

0, otherwise.

xi,j ≥ 0 ∀ (i, j) ∈ E

(60)

Formulation 60 can now be solved using any known shortest path algorithm. Using

the Reaching Algorithm from Dynamic Programming solves the problem in linear

time. The following is a step by step methodology for the heuristic:

Step 1: Temporarily replace each ci,j ¿ 0 with 1.
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Step 2: Use the Reaching Algorithm to solve the longest path to each vertex giving

its maximum cardinality

Step 3: Assign each vertex a rank according to its maximum cardinality (number of

arcs) of a path from s to the vertex

Step 4: Vertices are numbered according to their rank, starting with s, and numbering

vertices with equal ranks arbitrarily. Let the rank of a particular node be denoted

R(k), for k = 1, 2, ..., n vertices.

Step 5: Scale the original ci,j’s by R(j)−R(i)
R(t)

. Let c∗i,j = ci,j

(
R(j)−R(i)

R(t)

)
Step 6: Replace ci,j with c∗i,j in original formulation

Step 7: Solve new formulation with the Reaching Algorithm

In summary, the reaching algorithm is used to obtain the maximum number of arcs to

each node. Using this, the original cost coefficients are scaled. The reaching algorithm

is then used a second time to solve the scaled network to optimality. The next section

presents some preliminary results of the heuristic.

3.4 Results

This section presents some preliminary work on the performance of the heuristic

along with pareto optimal solutions using data from the optimal algorithms.

3.4.1 Heuristic Results.

Three experimental factors were used in testing: total nodes in the network, reach-

ability, and range in the arc costs. Reachability is defined as the maximum distance

any node can reach ahead. For instance, in a 100 node network, a reachability level

equal to .25 indicates that for any particular node in the network, this node can at

most reach a node 25 nodes away. Range is the range of values allowed in the mul-
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tiobjective value function at each arc. Since values of between 0 and 1 are the only

achievable levels, the allowable range cannot be above 1.

The errors in Table 13 are for a completely dense directed acyclic graph. This

results in a 49.5% dense network in matrices with a reachability of 1. This is due to

the fact that DAG’s are upper triangular matrices. In reality, a network will likely be

much less dense. In fact, in a DAG, a density of 5% is very realistic. The heuristic

has performed much better under more sparse networks but further testing is needed

to formalize its performance. We’ve encountered more variability in sparse networks

however. For instance, the heuristic will either find the correct path, or find the 2nd

best path which could be 10% away from the optimal. All errors presented here are

for a fully dense DAG.

Range appears is the most influential factor; more range in the arc costs yields

greater error. Of course, as the range of possible values increases, one expects error

to increase as well. In the case of the MASP, all values will be between 0 and 1 and

therefore a range of 1 is the worst case. Clearly, the heuristic performs within bounds

of the optimal solution divided by 1.05, which is very desirable. Using regression

analysis, we determined that # of nodes and range both significantly influenced the

error. As nodes increased, a decrease in error was observed. These results are omitted

and are expected to be published in a forthcoming paper.

Keep in mind the most important benefit of this heuristic is its speed. The next

fastest known algorithm to solve the average shortest past problem is non-linear,

O(N2), this heuristic is linear, O(V ). For problems with 100,000 or 1 million nodes,

this is a considerable savings. It could make an intractable problem tractable. A

separate study is necessary to observe actually practical performance. It is also note-

worthy that for a fair amount of the randomly produced matrices in Table 13, the

heuristic finds the optimal solution. In many of the sparse networks we’ve tested, the

186



Table 13. Scaling Heuristic Worst Case Errors Under Different Network Conditions

Run 1 Run 2 Run 3 Run 4 Run 5
# of Nodes Reachability Range Average

20 0.05 0.2 1.00 1.00 1.00 1.00 1.00 1.00
60 0.05 0.2 1.01 1.01 1.00 1.00 1.01 1.01
100 0.05 0.2 1.00 1.00 1.00 1.00 1.00 1.00
20 0.25 0.2 1.00 1.00 1.00 1.00 1.00 1.00
60 0.25 0.2 1.01 1.01 1.01 1.00 1.01 1.01
100 0.25 0.2 1.01 1.01 1.01 1.01 1.00 1.01
20 1 0.2 1.00 1.01 1.00 1.00 1.00 1.00
60 1 0.2 1.01 1.01 1.02 1.00 1.01 1.01
100 1 0.2 1.01 1.01 1.03 1.00 1.01 1.01
20 0.05 0.6 1.00 1.00 1.00 1.00 1.00 1.00
60 0.05 0.6 1.01 1.00 1.00 1.00 1.02 1.01
100 0.05 0.6 1.02 1.00 1.01 1.01 1.01 1.01
20 0.25 0.6 1.02 1.01 1.02 1.00 1.00 1.01
60 0.25 0.6 1.00 1.01 1.01 1.04 1.01 1.01
100 0.25 0.6 1.00 1.01 1.00 1.05 1.02 1.02
20 1 0.6 1.00 1.00 1.00 1.01 1.00 1.00
60 1 0.6 1.00 1.03 1.00 1.13 1.02 1.04
100 1 0.6 1.00 1.10 1.00 1.00 1.03 1.03
20 0.05 1 1.00 1.00 1.00 1.00 1.00 1.00
60 0.05 1 1.00 1.02 1.02 1.00 1.03 1.01
100 0.05 1 1.03 1.04 1.08 1.02 1.03 1.04
20 0.25 1 1.05 1.04 1.10 1.00 1.08 1.05
60 0.25 1 1.17 1.02 1.01 1.03 1.04 1.05
100 0.25 1 1.05 1.03 1.07 1.01 1.03 1.04
20 1 1 1.00 1.13 1.00 1.00 1.02 1.03
60 1 1 1.02 1.00 1.00 1.14 1.08 1.05
100 1 1 1.02 1.00 1.10 1.05 1.00 1.04

heuristic obtains the optimal solution even more frequently. However, more variance

in the error exists.

Finally, a better approach to testing is design of experiments [77]. In future

testing, we plan to incorporate the three factors above along with network density and

multiobjective arc cost probability distributions. In this way, experimental conditions

where the heuristic performs well can be determined with statistical certainty. We use

the term statistical certainty because each of the arc costs are randomly generated.
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If all variables were fixed, the results would be deterministic.

3.4.2 Analysis.

Optimal algorithms are now used to create optimal and non-optimal paths and

values to choose from. The optimization problem from formulation 55 in Section 3.2

underlie the graphs in this section. Each of the graphs are generated with the distance

matrix from Orlin’s or Wimer’s algorithm. Because the shortest path to each node is

generated, we can easily get the shortest average path to each node, along with the

number of arcs.

Figures 71, 72, 73, 74 show the surfaces created by random graphs. Each surface is

different. In Figure 71 for instance, the optimal solution is somewhere around 7 arcs.

However, the decision maker could choose to sacrifice .7 value to go from source to

sink in 1 arc. In contrast, going from the source to sink in 1 step in Figure 72 creates

a significant loss of value, .5. Figure 74 shows a discontinuous efficient frontier. For

arc lengths around 4, the solution is strictly dominated by the arc length of 1, but

also dominated by arc lengths greater than 5.

The optimal solution to the graph in Figure 75 is a 10 arc path (1 10 18 28 39 47

48 84 91 94 100) with an optimal average value of 0.9765. Table 14 shows all paths

shorter than the optimal path. All paths longer than the optimal solution in this case

give a worse solution. The optimal path and all paths in Table 14 strictly dominate

the longer paths to the right. In this case, the user may choose the path with 2 arcs

and a value of .9223 rather than choosing the optimal value of .9765 with 10 arcs. In

many cases, an added value of .05 or .1 may not be worth adding multiple arcs. In

other cases, transfers may require minimal effort and therefore the user may choose

to optimize value and ignore arc length.
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Table 14. Arcs vs Value

Number of arcs 1 2 3 4 5 6 7 8 9
Value 0.6905 0.9223 0.9549 0.9604 0.9631 0.9665 0.9685 0.9733 0.9765

Figure 71. Values vs Arcs Figure 72. Values vs Arcs

Figure 73. Values vs Arcs Figure 74. Values vs Arcs

3.5 Conclusions

The scaling heuristic performs very well under all the conditions we’ve encoun-

tered. Future work includes further testing under additional conditions and running

the heuristic on known problems. We hypothesize the heuristic will perform well

regardless of the conditions. However, optimality is still important. Wimer’s algo-
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Figure 75. Values vs Arcs Figure 76. Closeup of Figure 75

Figure 77. Values vs Arcs
Figure 78. Closeup of Figure 77

rithm solves to optimality and provides similar information to the algorithm suggested

by Dr. Orlin. A decision maker can use this information to make tradeoffs between

adding value to the network and adding arcs to the network. In many cases, a decision

maker is willing to give up small amounts of value for a decrease in arcs and transfers.

Therefore, it’s important not only to determine the optimal average path through the

network, but also to generate all possible paths through the network. This allows the

user to exercise preference through the use of the multicriteria optimization weighted

sum method.
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The MASP provides a basis for applying these methods to USTRANSCOM; it

allows us to determine the best path for a single product to flow through the system.

In actuality, USTRANSCOM is responsible for shipping numerous products. Imple-

mentation of the MASP to the processes of USTRANSCOM will certainly require

additional constraints, making the problem a variation of the minimum cost network

flow model. The resulting model is called the multiobjective maximum value network

flow problem and its formulation can be found in [56]. Results from this problem are

forthcoming.
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This problem is proven NP-complete as well. For directed acyclic graphs, two efficient heuristics are developed, and although we 
prove the error of any successive average shortest path heuristic is in theory unbounded, they both perform very well on random 
graphs. Furthermore, we define a general biobjective average minimum cost flow problem. The information from the heuristics can be 
used to estimate the efficient frontier in a special case of this problem trading off total flow and multiobjective value. Finally, several 
variants of these two problems are discussed. Proofs are conjectured showing the conditions under which the problems are solvable in 
polynomial time and when they remain NP-complete. 
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